Decision Procedures in Verification

Applications
6.2.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Verification

Modeling/Formalization

Examples: Verification

S specification $\mapsto \Sigma_{S}$ signature of $S ; \mathcal{T}_{S}$ theory of $S ; T_{S}$ transition system Init (\bar{x}); Update $\left(\bar{x}, \bar{x}^{\prime}\right)$

Given: $\operatorname{Safe}(x)$ formula (e.g. safety property)

- Invariant checking
(1) $\models \mathcal{T}_{S} \operatorname{Init}(\bar{x}) \rightarrow \operatorname{Safe}(\bar{x}) \quad$ (Safe holds in the initial state)
(2) $\models \mathcal{T}_{S} \operatorname{Safe}(\bar{x}) \wedge$ Update $\left(\bar{x}, \bar{x}^{\prime}\right) \rightarrow \operatorname{Safe}\left(\bar{x}^{\prime}\right)$
(Safe holds before \Rightarrow holds after update)
- Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

$$
\operatorname{Init}\left(x_{0}\right) \wedge \operatorname{Update}_{1}\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \operatorname{Update}_{n}\left(x_{j-1}, x_{j}\right) \wedge \neg \operatorname{Safe}\left(x_{j}\right) \models \mathcal{T}_{S} \perp
$$

Verification

Problems

- Invariant checking, bounded model checking

Theories

- Theories of arrays
- Theories of pointer structures
- recursively defined functions
- sets
- ...

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber, Jacobs, VS'07]

European Train Control System

Number of trains:
$n \geq 0$
\mathbb{Z}
Minimum and maximum speed of trains: $0 \leq \min <\max \quad \mathbb{R}$
Minimum secure distance: $\quad l_{\text {alarm }}>0 \quad \mathbb{R}$
Time between updates: $\Delta t>0 \quad \mathbb{R}$
Train positions before and after update: $\operatorname{pos}(i), \operatorname{pos}^{\prime}(i) \quad: \mathbb{Z} \rightarrow \mathbb{R}$

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber, Jacobs, VS'07]

European Train Control System

$$
\begin{aligned}
\text { Update }\left(\text { pos, } \operatorname{pos}^{\prime}\right): \quad \bullet & \forall i\left(i=0 \rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right) \\
& \bullet \forall i\left(0<i<n \wedge \operatorname{pos}(i-1)>0 \wedge \operatorname{pos}(i-1)-\operatorname{pos}(i) \geq l_{\text {alarm }}\right. \\
& \left.\rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)
\end{aligned}
$$

Example

Safety property: No collisions

$$
\text { Safe(pos) : } \quad \forall i, j(i<j \rightarrow \operatorname{pos}(i)>\operatorname{pos}(j))
$$

Inductive invariant: \quad Safe(pos) \wedge Update(pos, $\left.\operatorname{pos}^{\prime}\right) \wedge \neg \operatorname{Safe}\left(\right.$ pos $\left.^{\prime}\right) \models \mathcal{T}_{S} \perp$
where \mathcal{T}_{S} is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos' $: \mathbb{Z} \rightarrow \mathbb{R}$

Our idea: Use chains of "instantiation" + reduction.

Example

$$
\mathcal{T}_{1}=\mathcal{T}_{0} \cup \text { Safe }(\text { pos })
$$

$$
\mathcal{T}_{0}=\mathbb{R} \cup \mathbb{Z}
$$

To show:

$\mathcal{T}_{2} \cup \underbrace{\neg \text { Safe }\left(\text { pos }^{\prime}\right)}_{G} \models \perp$

Example

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
- Emergency messages
- Durations
- Specification language: CSP-OZ-DC
- Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC \mapsto Transition constr. \mapsto Decision procedures (H-PILoT)

Example 2: Parametric topology

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: - General constraints on parameters which guarantee safety

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:
p_{1} : trains

- 2-sorted pointers
p_{2} : segments

- scalar fields $\left(f: p_{i} \rightarrow \mathbb{R}, g: p_{i} \rightarrow \mathbb{Z}\right)$
- updates efficient decision procedures (H-PiLoT)

Example：Controller for line track（RBC）

```
RBC
    method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]
    method leave:[ls?:Segment; It?:Train]
    local_chan alloc, req, updPos, updSpd
\begin{tabular}{|c|c|c|c|c|c|}
\hline in & \(\stackrel{C}{ }\) & （（enter \(\rightarrow\) main） & State2 & \(\stackrel{C}{=}\) & （ alloc \(\rightarrow\) State 3 ） \\
\hline & \(\square\) & （leave \(\rightarrow\) main） & & \(\square\) & （enter \(\rightarrow\) State2） \\
\hline & \(\square\) & （updSpd \(\rightarrow\) State1）） & & \(\square\) & （leave \(\rightarrow\) State2） \\
\hline State 1 & \(\stackrel{\text { c }}{ }\) & \(((\) enter \(\rightarrow\) State 1 ） & State3 & \(\stackrel{\text { c }}{\underline{ }}\) & （ \((\) enter \(\rightarrow\) State3） \\
\hline & \(\square\) & （leave \(\rightarrow\) State1） & & \(\square\) & （leave \(\rightarrow\) State3） \\
\hline & & （req \(\rightarrow\) State2）\()\) & & \(\square\) & （updPos \(\rightarrow\) main） \\
\hline
\end{tabular}
\forallt:Train\Gammatid (t)>0
\forallt1,t2: Train | t1 f t2「tid (t1) f tid(t2)
    \foralls:Segment\Gammaprevs(nexts(s))=s
    * :Segment\Gammanexts(prevs(s))=
    \foralls:Segment\Gamma\operatorname{sid}(s)>0
    v:SegmentIsid(s)>0
    v}: Segment\Gamma\operatorname{sid}(nexts(s))> sid(s
    \foralls1, s2: Segment | s1 = s2\Gammasid(s1) \not= sid(s2)
    v}:\mathrm{ Segment | s 盾 snil/length(s) >d + gmax }\cdot\Delta
    \foralls:Segment | s\not= snil\Gamma0< < Imax(s)^ Imax(s)\leqgmax
    \forall1, s2: Segment「tid(incoming(s1))}\not=\operatorname{tid}(train(s2)
_effect_updSp
    \Delta(spd)
    \forallt:Train | pos(t)<length(segm (t)) -d ^ spd (t) - decmax . \Deltat>0
    \Gammamax {0, spd(t) - decmax . \Deltat } \leqspd'(t) \leqImax(segm(t))
    \max{0,\operatorname{spd}(t)-decmax.| |t} < spd'(t) < lmax(\operatorname{segm}(t))
    \Gammamax{0, spd (t) - decmax . \Deltat} \leq spd}\mp@subsup{|}{}{\prime}(t)\leq\operatorname{min}{\operatorname{lmax}(\operatorname{segm}(t)),\operatorname{Imax}(\operatorname{nexts(\operatorname{segm}(t)))}
    \max{0,\operatorname{spd}(t)-decmax \cdot\Deltat}\leq spd
    \Gammasp\mp@subsup{d}{}{\prime}}(t)=\operatorname{max}{0,spd(t)-\operatorname{decmax}\cdot\Deltat
```

$\left[\begin{array}{lr}\text { train：Segment } \rightarrow \text { Train } & \text {［Train on segment］} \\ \text { req：Segment } \rightarrow \mathbb{Z} & {[\text { Requested by train }} \\ \text { alloc：Segment } \rightarrow \mathbb{Z} & \text {［Allocated by train］}\end{array}\right.$

```
sd: SegmentData
```

sd: SegmentData
td: TrainData

```
td: TrainData
```


$\forall t: \operatorname{Train} \Gamma \operatorname{next}(\operatorname{prev}(t))=t$
$\forall t: \operatorname{Train} \Gamma \operatorname{prev}(\operatorname{next}(t))=$
$\forall t: \operatorname{Train} \Gamma 0 \leq \operatorname{pos}(t) \leq \operatorname{length}(\operatorname{segm}(t))$
$\forall t: \operatorname{Train} \Gamma 0 \leq \operatorname{spd}(t) \leq \operatorname{Imax}(\operatorname{segm}(t))$
$\forall t: \operatorname{Train\Gamma }$ alloc $(\operatorname{segm}(t))=\operatorname{tid}(t)$
$\forall t: \operatorname{Train} \Gamma \operatorname{alloc}(\operatorname{nexts}(\operatorname{segm}(t)))=$
$\forall t: \operatorname{Train\Gamma }$ alloc $(\operatorname{nexts}(\operatorname{segm}(t)))=\operatorname{tid}(t)$
$\forall s: \operatorname{Segment}\lceil\operatorname{segm}(\operatorname{train}(s))=s$
$\left[\begin{array}{lr}\text { TrainData } \\ \text { segm }: \text { Train } \rightarrow \text { Segment } & \text {［Train segment］} \\ \text { next }: \text { Train } \rightarrow \text { Train } & \text {［Next train］} \\ \text { spd }: \text { Train } \rightarrow \mathbb{R} & \text {［Speed］} \\ \text { pos }: \text { Train } \rightarrow \mathbb{R} & \text { TCurrent position］} \\ \text { prev }: \text { Train } \rightarrow \text { Train } & \text {［Prev．train］}\end{array}\right.$

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.
The RBC system passes repeatedly through four phases, modeled by events:

- updSpd (speed update)
- req (request update)
- alloc (allocation update)
- updPos (position update)

Between these events, trains may leave or enter the track (at specific segments), modeled by the events leave and enter.

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.
The RBC system passes repeatedly through four phases, modeled by events with corresponding COD schemata:

CSP:

```
method enter: [s1?:Segment; t0?:Train; t1?:Train; t2? : Train]
method leave : [ls?: Segment; It?: Train]
local_chan alloc,req, updPos, updSpd
\begin{tabular}{cccc} 
main \(\stackrel{c}{=}((\) updSpd \(\rightarrow\) State 1\()\) & State \(1 \stackrel{c}{=}((\) req \(\rightarrow\) State 2\()\) & State \(2 \stackrel{c}{=}((\) alloc \(\rightarrow\) State3 \()\) & State \(3 \stackrel{c}{=}((\) updPos \(\rightarrow\) main \()\) \\
\(\square(\) leave \(\rightarrow\) main \()\) & \(\square(\) leave \(\rightarrow\) State 1\()\) & \(\square(\) leave \(\rightarrow\) State 2\()\) & \(\square(\) leave \(\rightarrow\) State3 \()\) \\
\(\square(e n t e r \rightarrow\) main \()\) & \(\square(\) enter \(\rightarrow\) State 1\()\) & \(\square(\) enter \(\rightarrow\) State 2\()\) & \(\square(\) enter \(\rightarrow\) State 3\())\)
\end{tabular}
```


Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system

Data structures:

train: trains

- 2-sorted pointers
segm: segments


```
SegmentData
train : Segment }->\mathrm{ Train
req : Segment }->\mathbb{Z
alloc: Segment }->\mathbb{Z
[Requested by train]
    [Allocated by train]
```


Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system, and are used in the OZ part of the specification.
- 2. Axioms: define properties of the data structures and system parameters which do not change
- gmax $: \mathbb{R}$ (the global maximum speed),
- decmax $: \mathbb{R}$ (the maximum deceleration of trains),
- $d: \mathbb{R}$ (a safety distance between trains),
- Properties of the data structures used to model trains/segments

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 3. Init schema. describes the initial state of the system.
- trains - doubly-linked list; placed correctly on the track segments
- all trains respect their speed limits.
- 4. Update rules specify updates of the state space executed when the corresponding event from the CSP part is performed.
Example: Speed update
effect_updSpd \qquad Δ (spd)

```
\forall: Train | pos(t)<length(segm(t)) -d ^ spd(t) - decmax . \Deltat>0
        \Gammamax {0, spd (t) - decmax \cdot\Deltat} \leq spd'}(t)\leqImax(\operatorname{segm}(t)
\forallt:Train | pos(t) \geqlength(\operatorname{segm}(t)) -d ^ alloc(nexts(\operatorname{segm}(t)))=\operatorname{tid}(t)
    \Gammamax {0, spd (t) - decmax \cdot \Deltat } \leq spd'(t) \leq min {Imax(\operatorname{segm}(t)), Imax (nexts(segm(t)))}
\forallt:Train | pos(t) \geqlength(segm(t)) - d ^ ᄀ alloc(nexts(\operatorname{segm}(t)))=\operatorname{tid}(t)
    \spd}\mp@subsup{}{}{\prime}(t)=\operatorname{max}{0,\operatorname{spd}(t)-\mathrm{ decmax }\cdot\Deltat
```


Modular Verification

$$
\begin{array}{ll}
C O D \quad \mapsto \Sigma_{S} \text { signature of } S ; \mathcal{T}_{S} \text { theory of } S ; & T_{S} \text { transition constraint system } \\
\text { specification } & \operatorname{Init}(\bar{x}) ; \text { Update }\left(\bar{x}, \bar{x}^{\prime}\right)
\end{array}
$$

Given: $\operatorname{Safe}(x)$ formula (e.g. safety property)

- Invariant checking
(1) $\models \mathcal{T}_{S} \operatorname{Init}(\bar{x}) \rightarrow \operatorname{Safe}(\bar{x})$
(Safe holds in the initial state)
(2) $\models \mathcal{T}_{S} \operatorname{Safe}(\bar{x}) \wedge$ Update $\left(\bar{x}, \bar{x}^{\prime}\right) \rightarrow \operatorname{Safe}\left(\bar{x}^{\prime}\right)$
(Safe holds before \Rightarrow holds after update)
- Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

$$
\operatorname{Init}\left(x_{0}\right) \wedge \operatorname{Update}_{1}\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \operatorname{Update}_{n}\left(x_{j-1}, x_{j}\right) \wedge \neg \operatorname{Safe}\left(x_{j}\right) \models \mathcal{T}_{S} \perp
$$

Trains on a linear track


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\) length \((\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{lmax}(\operatorname{segm}(t))\)
```



```
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{lmax}(\operatorname{segm}(t)), \operatorname{lmax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right)\)
\(\operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d \wedge \quad \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)\)
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\) decmax, 0\()\)
```


Trains on a linear track


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\operatorname{length}(\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{lmax}(\operatorname{segm}(t))\)
```



```
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{lmax}(\operatorname{segm}(t)), \operatorname{Imax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right)\)
```



```
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\operatorname{decmax}, 0)\)
```


Proof task:

Safe (pos, next, prev, spd) \wedge SpeedUpdate (pos, next, prev, spd, spd' $) \rightarrow$ Safe(pos' ${ }^{\prime}$ next, prev, spd $\left.{ }^{\prime}\right)$

Incoming and outgoing trains

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')
Assume: $s_{1} \neq$ null $_{s}, t_{1} \neq$ null $_{t}, \operatorname{train}(s) \neq t_{1}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{idt}\left(t_{1}\right)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{next}_{t}(t)=\operatorname{null}_{t}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=t_{1} \wedge \operatorname{next}^{\prime}\left(t_{1}\right)=\operatorname{null}_{t}$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right), \operatorname{next}_{t}(t) \neq \operatorname{null}_{t}, \operatorname{ids}\left(\operatorname{segm}\left(\operatorname{next}_{t}(t)\right)\right) \leq \operatorname{ids}\left(s_{1}\right)$
$\rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t)) \geq \operatorname{ids}\left(s_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$

Incoming and outgoing trains

Safety property

Safety property we want to prove: no two trains ever occupy the same track segment:

$$
(\text { Safe }):=\forall t_{1}, t_{2} \quad \operatorname{segm}\left(t_{1}\right)=\operatorname{segm}(t 2) \rightarrow t_{1}=t_{2}
$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant $(\operatorname{lnv}(i))$ for every control location i of the TCS, and prove:

$$
(\operatorname{lnv}(i)) \models(\text { Safe }) \text { for all locations } i
$$

and that the invariants are preserved under all transitions of the system,

$$
(\operatorname{lnv}(i)) \wedge(\text { Update }) \models\left(\operatorname{lnv}^{\prime}(j)\right)
$$

whenever (Update) is a transition from location i to j.

Other Applications

Verification of "Hybrid automata"

Example

Example

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$
\begin{array}{ll}
\operatorname{lnv}_{1} & x_{1}+x_{2}+x_{3} \leq L_{f} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \min \\
& \dot{x}_{1} \geq \operatorname{dmin} \wedge \dot{x}_{2} \geq \operatorname{dmin} \wedge \dot{x}_{3}=0 \wedge-\delta_{a} \leq \dot{x}_{1}-\dot{x}_{2} \leq \delta_{a}
\end{array}
$$

Jumps: $(1,4)$
If proportion not kept: system jumps into mode 4 (Dump)

$$
\begin{aligned}
e_{1} & \text { guard }_{e_{1}}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2} \geq \epsilon_{a} \\
\text { (from 1 to 4) } & \operatorname{jump}_{e_{1}}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=0 \\
e_{2} & \text { guard }_{e_{1}}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2} \leq-\epsilon_{a} \\
\text { (from 1 to 4) } & \text { jump }_{e_{1}}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=0
\end{aligned}
$$

Example

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$
\begin{array}{ll}
\operatorname{lnv}_{1} & x_{1}+x_{2}+x_{3} \leq L_{f} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \min
\end{array}
$$

$$
\text { flow }_{1} \quad \dot{x}_{1} \geq \mathrm{dmin} \wedge \dot{x}_{2} \geq \operatorname{dmin} \wedge \dot{x}_{3}=0 \wedge-\delta_{a} \leq \dot{x}_{1}-\dot{x}_{2} \leq \delta_{a}
$$

Jumps: $(1,2)$
If the total quantity of substances exceeds level L_{f} (tank filled) the system jumps into mode 2 (React).

$$
\begin{array}{ll}
e=(1,2) \quad & \operatorname{guard}_{(1,2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \geq L_{f} \\
& \operatorname{jump}_{(1,2)}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=x_{i}
\end{array}
$$

Example

Mode 2: React Temperature is high. Substances 1 and 2 react.
The reaction consumes equal quantities of substances 1 and 2 and produces substance 3 .

$$
\begin{array}{ll}
\text { Inv }_{2} & L_{f} \leq x_{1}+x_{2}+x_{3} \leq L_{\text {overflow }} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \max \\
& \dot{x}_{1} \leq-\operatorname{dmax} \wedge \dot{x}_{2} \leq-\operatorname{dmax} \wedge \dot{x}_{3} \geq \operatorname{dmin} \\
& \wedge \dot{x}_{1}=\dot{x}_{2} \wedge \dot{x}_{3}+\dot{x}_{1}+\dot{x}_{2}=0
\end{array}
$$

Jumps:

If the proportion between substances 1 and 2 is not kept the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal level min the system jumps into mode 3 (Filter).

Example

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

$$
\begin{array}{ll}
\operatorname{lnv}_{3} & x_{1}+x_{2}+x_{3} \leq L_{\text {overflow }} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge x_{3} \geq \min \\
\text { flow }_{3} & \dot{x}_{1}=0 \wedge \dot{x}_{2}=0 \wedge \dot{x}_{3} \leq-\operatorname{dmax}
\end{array}
$$

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some minimal level min the system jumps into mode 1 (Fill).

Example

Mode 4: Dump The content of the tank is emptied.
For simplicity we assume that this happens instantaneously:

$$
\operatorname{Inv}_{4}: \bigwedge_{i=1}^{3} x_{i}=0 \text { and flow } 4: \bigwedge_{i=1}^{3} \dot{x}_{i}=0
$$

Simple verification problems

Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:
(1) Init $_{q} \models \Psi$ for all $q \in Q$;
(2) Ψ is invariant under jumps and flows:
(Flow) For every flow in mode q, the continuous variables satisfy Ψ during and at the end of the flow.
(Jump) For every jump according to a control switch e, if Ψ holds before the jump, it holds after the jump.

Examples:

- Is " $x_{1}+x_{2}+x_{3} \leq L_{\text {overflow" }}$ an invariant? (no overflow)
- Is " $-\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a}$ " an invariant?
(substances always mixed in the right proportion)

Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length $\leq k$?, i.e.:
(1) Init $_{q} \models$ Safe for every $q \in Q$;
(2) The continuous variables satisfy Safe during and at the end of all runs of length j for all $1 \leq j \leq k$.

Example:

- Is " $x_{1}+x_{2}+x_{3} \leq L_{\text {overflow" }}$ true after all runs of length $\leq k$ starting from a state with e.g. $x_{1}=x_{2}=x_{3}=0$?
- Is " $-\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a}$ " true after all runs of length $\leq k$ starting from a state with $x_{1}=x_{2}=x_{3}=0$?

Simple verification problems

Reductions of verification problems to linear arithmetic
(1) Mode invariants, initial states and guards of mode switches are described as conjunctions of linear inequalities.

Example: $\operatorname{lnv}_{q}=\bigwedge_{j=1}^{m_{q}}\left(\sum_{i=1}^{n} a_{i j}^{q} x_{i} \leq a_{j}^{q}\right)$ can be expressed by:

$$
\operatorname{lnv}_{q}\left(x_{1}(t), \ldots, x_{n}(t)\right)=\bigwedge_{j=1}^{m_{q}}\left(\sum_{i=1}^{n} a_{i j}^{q} x_{i}(t) \leq a_{j}^{q}\right)
$$

Simple verification problems

Reductions of verification problems to linear arithmetic
(2) The flow conditions are expressed by non-strict linear inequalities:
flow $_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. flow $_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.

Simple verification problems

Reductions of verification problems to linear arithmetic
(2) The flow conditions are expressed by non-strict linear inequalities:
flow $_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. flow $_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.

$$
\begin{aligned}
& \text { Approach: Express the flow conditions in }\left[t_{0}, t_{1}\right] \text { without referring to derivatives. } \\
& \text { Flow }_{q}\left(t_{0}, t_{1}\right): \forall t\left(t_{0} \leq t \leq t_{1} \rightarrow \operatorname{lnv}_{q}(\bar{x}(t))\right) \wedge \forall t, t^{\prime}\left(t_{0} \leq t \leq t^{\prime} \leq t_{1} \rightarrow \underline{\text { flow }}_{q}\left(t, t^{\prime}\right)\right) . \\
& \text { where: } \quad \underline{\text { flow }}_{q}\left(t, t^{\prime}\right)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q}\left(x_{i}\left(t^{\prime}\right)-x_{i}(t)\right) \leq c_{j}^{q}\left(t^{\prime}-t\right)\right) .
\end{aligned}
$$

Simple verification problems

Reductions of verification problems to linear arithmetic
(2) The flow conditions are expressed by non-strict linear inequalities:
flow $_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. flow $_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.

Approach: Express the flow conditions in $\left[t_{0}, t_{1}\right]$ without referring to derivatives. $\operatorname{Flow}_{q}\left(t_{0}, t_{1}\right): \forall t\left(t_{0} \leq t \leq t_{1} \rightarrow \operatorname{lnv}_{q}(\bar{x}(t))\right) \wedge \forall t, t^{\prime}\left(t_{0} \leq t \leq t^{\prime} \leq t_{1} \rightarrow \underline{\text { flow }}_{q}\left(t, t^{\prime}\right)\right)$.

Remark: $\operatorname{Flow}_{q}\left(t_{0}, t_{1}\right)$ contains universal quantifiers.
Locality results: Sufficient to use the instances at t_{0} and t_{1}

$$
\left.\left.\left.\operatorname{Flow}_{q}^{\operatorname{Inst}}\left(t_{0}, t_{1}\right): \operatorname{lnv}_{q}\left(\bar{x}\left(t_{0}\right)\right)\right) \wedge \operatorname{lnv}_{q}\left(\bar{x}\left(t_{1}\right)\right)\right) \wedge \underline{\operatorname{flow}}_{q}\left(t_{0}, t_{1}\right)\right) .
$$

Invariant checking

Theorem. The following are equivalent for any LHA:
(1) Ψ (a convex predicate) is an invariant of the LHA;
(2) For all $q \in Q, e=\left(q, q^{\prime}\right) \in E$, the following are unsatisfiable:

$$
\begin{array}{ll}
F_{\text {Flow }(q)} & \Psi\left(\bar{x}\left(t_{0}\right)\right) \wedge \operatorname{Flow}_{q}\left(t_{0}, t\right) \wedge \neg \Psi(\bar{x}(t)) \wedge t \geq t_{0} \\
F_{\text {jump }}(e) & \Psi(\bar{x}(t)) \wedge \operatorname{Jump}_{e}\left(\bar{x}(t), \bar{x}^{\prime}(0)\right) \wedge \operatorname{lnv}_{q^{\prime}}\left(\bar{x}^{\prime}(0)\right) \wedge \neg \Psi\left(\bar{x}^{\prime}(0)\right)
\end{array}
$$

(3) For all $q \in Q, e=\left(q, q^{\prime}\right) \in E$, the following are unsatisfiable:

$$
\begin{array}{ll}
F_{\text {flow }}(q) & \Psi\left(\bar{x}\left(t_{0}\right)\right) \wedge \operatorname{lnv}_{q}\left(\bar{x}\left(t_{0}\right)\right) \wedge \text { flow }_{q}\left(t_{0}, t\right) \wedge \operatorname{lnv}_{q}(\bar{x}(t)) \wedge \neg \Psi(\bar{x}(t)) \wedge t \geq t_{0} \\
F_{\text {jump }}(e) & \Psi(\bar{x}(t)) \wedge \operatorname{Jump}_{e}\left(\bar{x}(t), \bar{x}^{\prime}(0)\right) \wedge \operatorname{lnv}_{q^{\prime}}\left(\bar{x}^{\prime}(0)\right) \wedge \neg \Psi\left(\bar{x}^{\prime}(0)\right)
\end{array}
$$

- $\operatorname{Flow}_{q}\left(t_{0}, t\right): \quad \forall t^{\prime}\left(t_{0} \leq t^{\prime} \leq t \rightarrow \operatorname{lnv}_{q}\left(\bar{x}\left(t^{\prime}\right)\right)\right) \wedge \quad \forall t^{\prime}, t^{\prime \prime}\left(t_{0} \leq t^{\prime} \leq t^{\prime \prime} \leq t \rightarrow \underline{\text { flow }}_{q}\left(t^{\prime}, t^{\prime \prime}\right)\right)$.
- $\underline{\text { flow }}_{q}\left(t_{0}, t\right)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q}\left(x_{i}(t)-x_{i}\left(t_{0}\right)\right) \leq c_{j}^{q}\left(t-t_{0}\right)\right)$.

Invariant checking

Theorem. The following are equivalent for any LHA:
(1) Ψ (a convex predicate) is an invariant of the LHA;

Invariant checking: Reduction to checking the satisfiability of conjunctions of linear inequalities \mapsto can be checked in PTIME [Khachian]

Parametric systems: Use QE to generate constraints on parameters which guarantee that Ψ invariant \mapsto can be done in EXPTIME in general;
if constraints in UTVPI ${ }^{\neq}$: PTIME [Koubarakis, Skiadoupoulos]
(3) For all $q \in Q, e=\left(q, q^{\prime}\right) \in E$, the following are unsatisfiable:

$$
\begin{array}{ll}
F_{\text {flow }}(q) & \Psi\left(\bar{x}\left(t_{0}\right)\right) \wedge \operatorname{Inv}_{q}\left(\bar{x}\left(t_{0}\right)\right) \wedge \text { flow }_{q}\left(t_{0}, t\right) \wedge \operatorname{Inv}_{q}(\bar{x}(t)) \wedge \neg \Psi(\bar{x}(t)) \wedge t \geq t_{0} \\
F_{\text {jump }}(e) & \Psi(\bar{x}(t)) \wedge \operatorname{Jump}_{e}\left(\bar{x}(t), \bar{x}^{\prime}(0)\right) \wedge \operatorname{lnv}_{q^{\prime}}\left(\bar{x}^{\prime}(0)\right) \wedge \neg \Psi\left(\bar{x}^{\prime}(0)\right)
\end{array}
$$

$$
\underline{\text { flow }}_{q}\left(t_{0}, t_{1}\right)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q}\left(x_{i}\left(t_{1}\right)-x_{i}\left(t_{0}\right)\right) \leq c_{j}^{q}\left(t_{1}-t_{0}\right)\right) .
$$

Example

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]
use the capabilities of H-PILoT of generating counterexamples
- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures
the decision procedures presented before can be used without problems

Verification

Modeling/Formalization

Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification

location unreachable

check feasibility

conjunction of constraints: $\phi(1) \wedge \operatorname{Tr}(1,2) \wedge \cdots \wedge \operatorname{Tr}(n-1, n) \wedge \neg \operatorname{safe}(n)$

- satisfiable: feasible path
- unsatisfiable: refine abstract program s.t. the path is not feasible [McMillan 2003-2006] use 'local causes of inconsistency'
\mapsto compute interpolants

Summary

- Decision procedures for various theories/theory combinations Implemented in most of the existing SMT provers:
Z3: http://z3.codeplex.com/
CVC4: http://cvc4.cs.nyu.edu/web/
Yices: http://yices.csl.sri.com/
- Ideas about how to use them for verification

More details on Specification, Model Checking, Verification:
Next semester: Formal Specification and Verification
Decision procedures for other classes of theories/Applications"
Next semester: Seminar "Decision Procedures and Applications"
Forschungspraktikum
BSc/MSc Theses in the area

