Decision Procedures in Verification

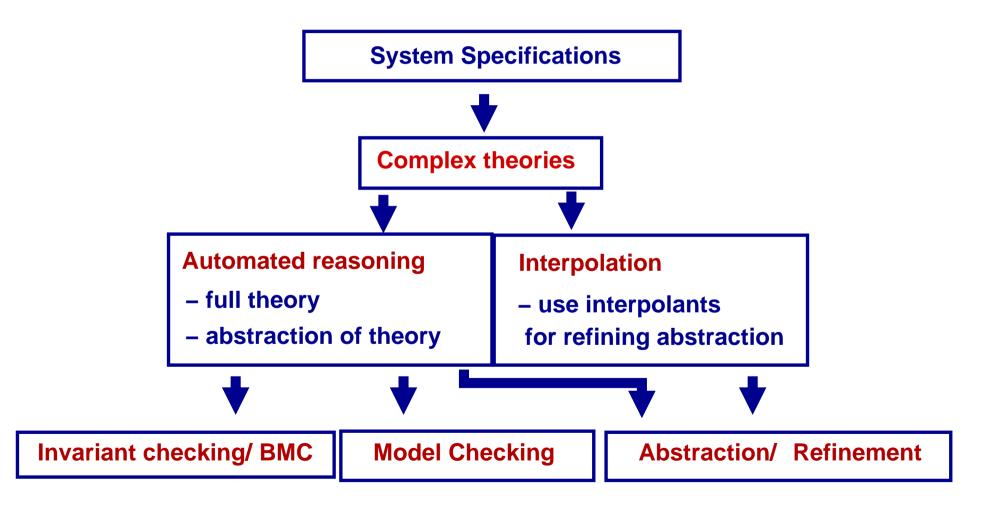
Applications

6.2.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Modeling/Formalization



S specification $\mapsto \Sigma_S$ signature of S; \mathcal{T}_S theory of S; \mathcal{T}_S transition system $\mathsf{Init}(\overline{x})$; $\mathsf{Update}(\overline{x}, \overline{x'})$

Given: Safe(*x*) formula (e.g. safety property)

• Invariant checking

(1) $\models_{\mathcal{T}_S} \operatorname{Init}(\overline{x}) \to \operatorname{Safe}(\overline{x})$ (Safe holds in the initial state) (2) $\models_{\mathcal{T}_S} \operatorname{Safe}(\overline{x}) \land \operatorname{Update}(\overline{x}, \overline{x'}) \to \operatorname{Safe}(\overline{x'})$ (Safe holds before \Rightarrow holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \le j \le k$:

 $\mathsf{Init}(x_0) \land \mathsf{Update}_1(x_0, x_1) \land \cdots \land \mathsf{Update}_n(x_{j-1}, x_j) \land \neg \mathsf{Safe}(x_j) \models_{\mathcal{T}_S} \bot$

Verification

Problems

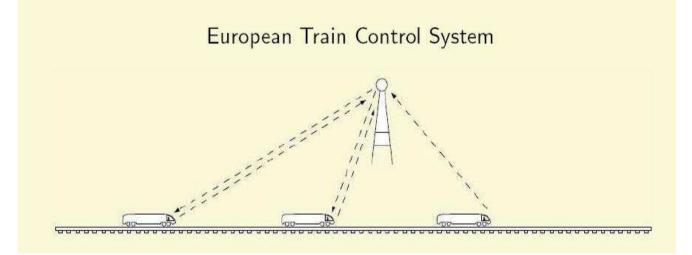
• Invariant checking, bounded model checking

Theories

- Theories of arrays
- Theories of pointer structures
- recursively defined functions
- sets

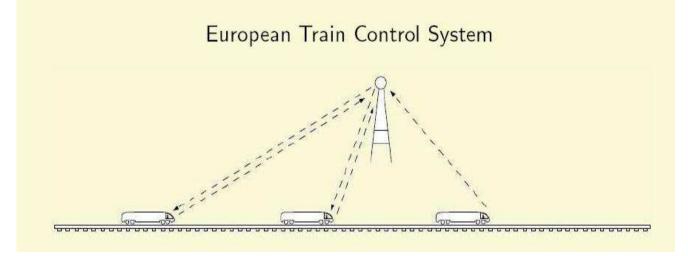
• ...

Simplified version of ETCS Case Study [Jacobs, VS'06, Faber, Jacobs, VS'07]



Number of trains:	<i>n</i> ≥ 0	\mathbb{Z}
Minimum and maximum speed of trains:	$0 \leq \min < \max$	\mathbb{R}
Minimum secure distance:	$I_{\rm alarm} > 0$	\mathbb{R}
Time between updates:	$\Delta t > 0$	\mathbb{R}
Train positions before and after update:	pos (i), pos' (i)	$:\mathbb{Z} ightarrow\mathbb{R}$

Simplified version of ETCS Case Study [Jacobs, VS'06, Faber, Jacobs, VS'07]



$$\begin{array}{ll} \mathsf{Update}(\mathsf{pos},\mathsf{pos}'): & \bullet \ \forall \ i \ (i=0 \rightarrow \mathsf{pos}(i) + \Delta t * \min \leq \mathsf{pos}'(i) \leq \mathsf{pos}(i) + \Delta t * \max) \\ & \bullet \ \forall \ i \ (0 < i < n \ \land \ \mathsf{pos}(i-1) > 0 \ \land \ \mathsf{pos}(i-1) - \mathsf{pos}(i) \geq \mathit{I}_{\mathsf{alarm}} \\ & \rightarrow \mathsf{pos}(i) + \Delta t * \min \leq \mathsf{pos}'(i) \leq \mathsf{pos}(i) + \Delta t * \max) \end{array}$$

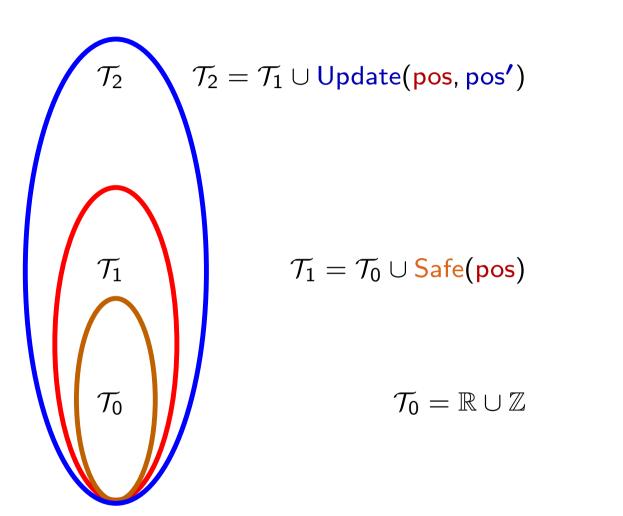
. . .

Safety property: No collisions Safe(pos) : $\forall i, j(i < j \rightarrow pos(i) > pos(j))$

Inductive invariant: Safe(pos) \land Update(pos, pos') $\land \neg$ Safe(pos') $\models_{\mathcal{T}_S} \bot$

where \mathcal{T}_S is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos' : $\mathbb{Z} \to \mathbb{R}$

Our idea: Use chains of "instantiation" + reduction.



To show: $\mathcal{T}_2 \cup \underbrace{\neg \mathsf{Safe}(\mathsf{pos}')}_{\mathsf{G}} \models \bot$

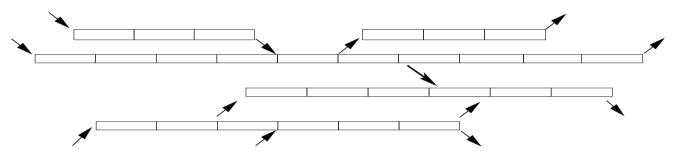
relationships between parameters which guarantee safety

[Faber, Jacobs, VS, 2007]

- Take into account also:
 - Emergency messages
 - Durations
- Specification language: CSP-OZ-DC
 - Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]
 CSP-OZ-DC → Transition constr. → Decision procedures (H-PILoT)

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

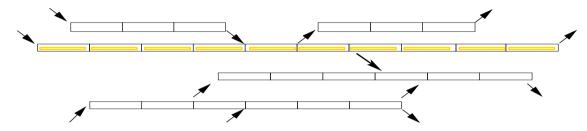


Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]



Assumptions:

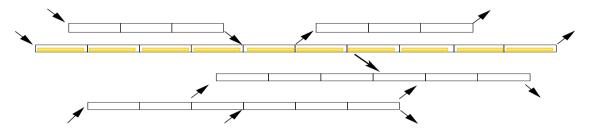
- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: Prove safety for trajectories with incoming/outgoing trains
 - Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: General constraints on parameters which guarantee safety

Parametricity and modularity

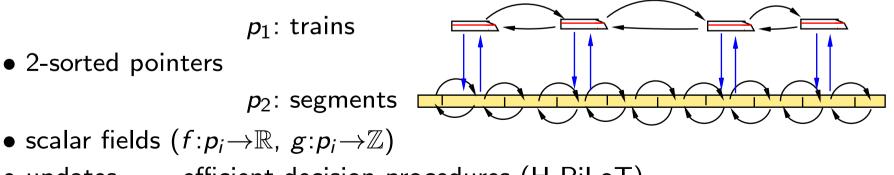
• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]



Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:



• updates efficient decision procedures (H-PiLoT)

RBC method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : method leave : [ls? : Segment; lt? : Train] local_chan alloc, req, updPos, updSpd	Train]	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} State2 & \stackrel{c}{=} & ((alloc \rightarrow State3) \\ & & & & \\ & & & & (enter \rightarrow State2) \\ & & & & \\ & & & & (leave \rightarrow State2)) \\ State3 & \stackrel{c}{=} & ((enter \rightarrow State3) \\ & & & & (leave \rightarrow State3) \\ & & & & & (updPos \rightarrow main)) \\ \hline TrainData & & & & \\ segm: Train \rightarrow Segment & & & & \\ next: Train \rightarrow Train & & & & & \\ next: Train \rightarrow R & & & & & \\ pos: Train \rightarrow \mathbb{R} & & & & & \\ pos: Train \rightarrow \mathbb{R} & & & & & \\ pos: Train \rightarrow Train & & & & & \\ prev: Train \rightarrow Train & & & & & \\ \end{array}$	CSP
	m(t)) = tid(t)	OZ
	: :	

14

Data classes

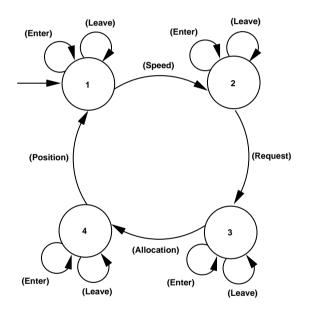
Interface

CSP part

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

- updSpd (speed update)
 - req (request update)
 - alloc (allocation update)
 - updPos (position update)



Between these events, trains may leave or enter the track (at specific segments), modeled by the events leave and enter.

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events with corresponding COD schemata:

CSP: _____

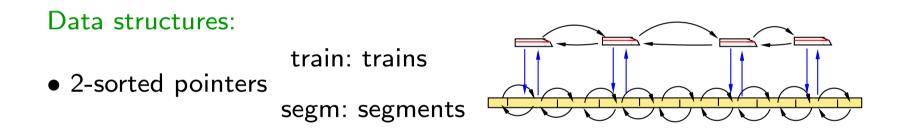
method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]
method leave : [ls? : Segment; lt? : Train]
local_chan alloc, req, updPos, updSpd

$\texttt{main} \stackrel{c}{=} ((\textit{updSpd} \rightarrow \textit{State1})$	$State1 \stackrel{c}{=} ((req \rightarrow State2))$	$State2 \stackrel{c}{=} ((alloc \rightarrow State3)$	$State3 \stackrel{c}{=} ((updPos \rightarrow main))$
$\Box(\mathit{leave}{ ightarrow}{ m main})$	\Box (<i>leave</i> \rightarrow <i>State</i> 1)	\Box (<i>leave</i> \rightarrow <i>State</i> 2)	$\Box(leave \rightarrow State3)$
$\square(\mathit{enter}{ ightarrow} \mathtt{main}))$	$\Box(enter \rightarrow State1))$) $\Box(enter \rightarrow State2))$	$\Box(enter \rightarrow State3))$

OZ part. Consists of data classes, axioms, the Init schema, update rules.

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values during runs of the system



SegmentData train : Segment $ ightarrow$ Train	
$req: Segment ightarrow \mathbb{Z}$ alloc: Segment ightarrow \mathbb{Z}	[Train on segment] [Requested by train]
and . Segment $\rightarrow \mathbb{Z}$	[Allocated by train]

TrainData	
segm : Train $ ightarrow$ Segment	
	[Train segment]
next : $\mathit{Train} \rightarrow \mathit{Train}$	[Next train]
$next: Train ightarrow Train \ spd: Train ightarrow \mathbb{R} \ pos: Train ightarrow \mathbb{R}$	[Speed]
pos : Train $ ightarrow \mathbb{R}$	[Current position]
prev : Train $ ightarrow$ Train	[Prev. train]

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system, and are used in the OZ part of the specification.
- 2. Axioms: define properties of the data structures and system parameters which do not change
 - $gmax : \mathbb{R}$ (the global maximum speed),
 - $decmax : \mathbb{R}$ (the maximum deceleration of trains),
 - $d : \mathbb{R}$ (a safety distance between trains),
 - Properties of the data structures used to model trains/segments

OZ part. Consists of data classes, axioms, the Init schema, update rules.

- 3. Init schema. describes the initial state of the system.
 - trains doubly-linked list; placed correctly on the track segments
 - all trains respect their speed limits.
- 4. Update rules specify updates of the state space executed when the corresponding event from the CSP part is performed.

Example: Speed update

Given: Safe(*x*) formula (e.g. safety property)

• Invariant checking

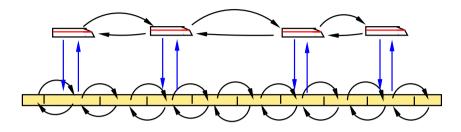
(1) $\models_{\mathcal{T}_S} \operatorname{Init}(\overline{x}) \to \operatorname{Safe}(\overline{x})$ (Safe holds in the initial state) (2) $\models_{\mathcal{T}_S} \operatorname{Safe}(\overline{x}) \land \operatorname{Update}(\overline{x}, \overline{x'}) \to \operatorname{Safe}(\overline{x'})$ (Safe holds before \Rightarrow holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \le j \le k$:

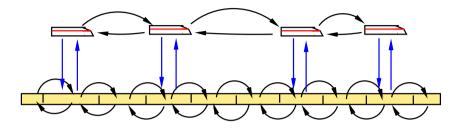
 $\mathsf{Init}(x_0) \land \mathsf{Update}_1(x_0, x_1) \land \cdots \land \mathsf{Update}_n(x_{j-1}, x_j) \land \neg \mathsf{Safe}(x_j) \models_{\mathcal{T}_S} \bot$

Trains on a linear track



Example 1: Speed Update
$$pos(t) < length(segm(t)) - d \rightarrow 0 \leq spd'(t) \leq lmax(segm(t))$$
 $pos(t) \geq length(segm(t)) - d \wedge alloc(next_s(segm(t))) = tid(t)$ $\rightarrow 0 \leq spd'(t) \leq min(lmax(segm(t)), lmax(next_s(segm(t))))$ $pos(t) \geq length(segm(t)) - d \wedge alloc(next_s(segm(t))) \neq tid(t)$ $\rightarrow spd'(t) = max(spd(t) - decmax, 0)$

Trains on a linear track

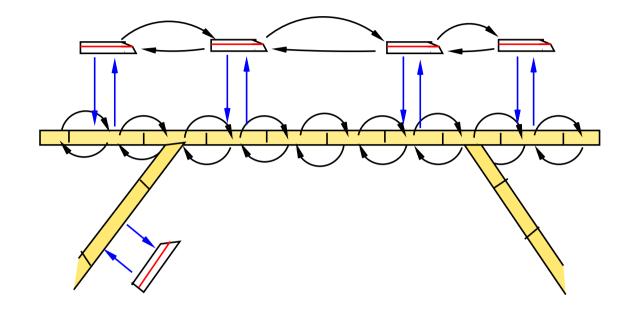


Example 1: Speed Update
$$pos(t) < length(segm(t)) - d \rightarrow 0 \le spd'(t) \le lmax(segm(t))$$
 $pos(t) \ge length(segm(t)) - d \land alloc(next_s(segm(t))) = tid(t)$ $\rightarrow 0 \le spd'(t) \le min(lmax(segm(t)), lmax(next_s(segm(t))))$ $pos(t) \ge length(segm(t)) - d \land alloc(next_s(segm(t))) \ne tid(t)$ $\rightarrow spd'(t) = max(spd(t) - decmax, 0)$

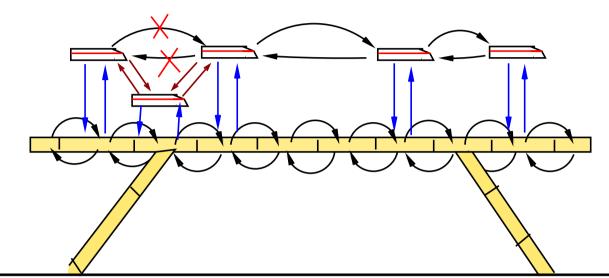
Proof task:

 $\mathsf{Safe}(\mathsf{pos},\mathsf{next},\mathsf{prev},\mathsf{spd}) \land \mathsf{SpeedUpdate}(\mathsf{pos},\mathsf{next},\mathsf{prev},\mathsf{spd},\mathsf{spd'}) \rightarrow \mathsf{Safe}(\mathsf{pos'},\mathsf{next},\mathsf{prev},\mathsf{spd'})$

Incoming and outgoing trains



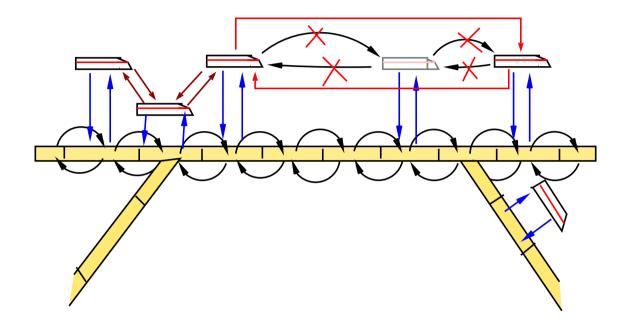
Incoming and outgoing trains



Example 2: Enter Update (also updates for segm', spd', pos', train') **Assume:** $s_1 \neq \text{null}_s$, $t_1 \neq \text{null}_t$, $\text{train}(s) \neq t_1$, $\text{alloc}(s_1) = \text{idt}(t_1)$ $t \neq t_1$, $\text{ids}(\text{segm}(t)) < \text{ids}(s_1)$, $\text{next}_t(t) = \text{null}_t$, $\text{alloc}(s_1) = \text{tid}(t_1) \rightarrow \text{next}'(t) = t_1 \land \text{next}'(t_1) = \text{null}_t$ $t \neq t_1$, $\text{ids}(\text{segm}(t)) < \text{ids}(s_1)$, $\text{alloc}(s_1) = \text{tid}(t_1)$, $\text{next}_t(t) \neq \text{null}_t$, $\text{ids}(\text{segm}(\text{next}_t(t))) \leq \text{ids}(s_1)$ $\rightarrow \text{next}'(t) = \text{next}_t(t)$

 $t \neq t_1$, ids(segm(t)) \geq ids(s_1) \rightarrow next'(t)=next_t(t)

Incoming and outgoing trains



Safety property we want to prove: no two trains ever occupy the same track segment:

$$(\mathsf{Safe}) := \forall t_1, t_2 \; \mathsf{segm}(t_1) = \mathsf{segm}(t_2) \rightarrow t_1 = t_2$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

 $(Inv(i)) \models (Safe)$ for all locations *i*

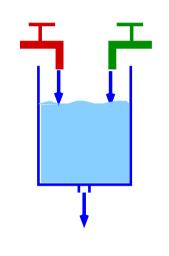
and that the invariants are preserved under all transitions of the system,

 $(Inv(i)) \land (Update) \models (Inv'(j))$

whenever (Update) is a transition from location i to j .

Other Applications

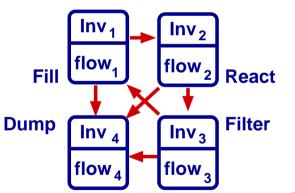
Verification of "Hybrid automata"



Chemical plant

Two substances are mixed; they react. The resulting product is filtered out; then the procedure is repeated.

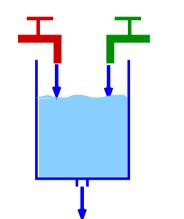
Check:



- No overflow
- Substances always in the right proportion
- If substances in wrong proportion, tank can be drained in \leq 200s.

Parametric description:

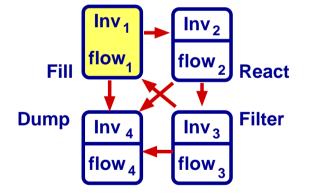
• Determine values for parameters such that this is the case



Mode 1: Fill Temperature is low, 1 and 2 do not react. Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$\begin{aligned} \mathsf{Inv}_1 & x_1 + x_2 + x_3 \leq \mathsf{L}_f \land \ \bigwedge_{i=1}^3 x_i \geq 0 \land \\ & -\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land \ 0 \leq x_3 \leq \mathsf{min} \end{aligned}$$

$$\mathsf{flow}_1 \qquad \dot{x}_1 \geq \mathsf{dmin} \land \dot{x}_2 \geq \mathsf{dmin} \land \dot{x}_3 = 0 \land -\delta_a \leq \dot{x}_1 - \dot{x}_2 \leq \delta_a$$

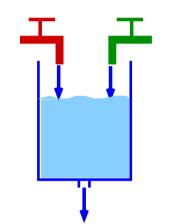


Jumps: (1,4)

If proportion not kept: system jumps into mode 4 (**Dump**)

$$\begin{array}{ll} e_1 & \text{guard}_{e_1}(x_1, x_2, x_3) = x_1 - x_2 \ge \epsilon_a \\ \text{(from 1 to 4)} & \text{jump}_{e_1}(x_1, x_2, x_3, x_1', x_2', x_3') = \bigwedge_{i=1}^3 x_i' = 0 \end{array}$$

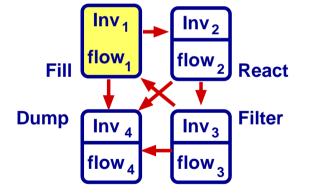
$$\begin{array}{ll} e_2 & \text{guard}_{e_1}(x_1, x_2, x_3) = x_1 - x_2 \leq -\epsilon_a \\ \text{(from 1 to 4)} & \text{jump}_{e_1}(x_1, x_2, x_3, x_1', x_2', x_3') = \bigwedge_{i=1}^3 x_i' = 0 \end{array}$$



Mode 1: Fill Temperature is low, 1 and 2 do not react. Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$\begin{aligned} \text{Inv}_1 & x_1 + x_2 + x_3 \leq L_f \land \quad \bigwedge_{i=1}^3 x_i \geq 0 \land \\ & -\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land \quad 0 \leq x_3 \leq \min \end{aligned}$$

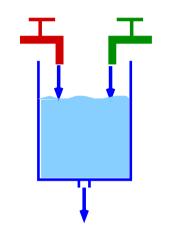
$$\mathsf{flow}_1 \qquad \dot{x}_1 \ge \mathsf{dmin} \land \dot{x}_2 \ge \mathsf{dmin} \land \dot{x}_3 = 0 \land -\delta_a \le \dot{x}_1 - \dot{x}_2 \le \delta_a$$



Jumps: (1,2)

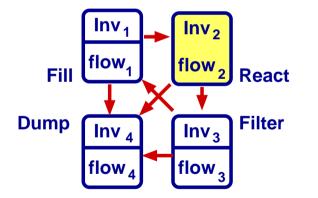
If the total quantity of substances exceeds level L_f (tank filled) the system jumps into mode 2 (**React**).

$$\begin{aligned} \mathsf{e} &= (1,2) \qquad \mathsf{guard}_{(1,2)}(x_1, x_2, x_3) = x_1 + x_2 + x_3 \ge L_f \\ \mathsf{jump}_{(1,2)}(x_1, x_2, x_3, x_1', x_2', x_3') &= \bigwedge_{i=1}^3 x_i' = x_i' \end{aligned}$$



Mode 2: React Temperature is high. Substances 1 and 2 react. The reaction consumes equal quantities of substances 1 and 2 and produces substance 3.

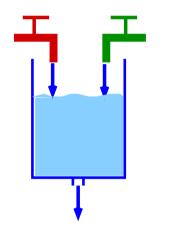
$$\begin{array}{ll} \mathsf{flow}_2 & \dot{x}_1 \leq -\mathsf{dmax} \wedge \dot{x}_2 \leq -\mathsf{dmax} \wedge \dot{x}_3 \geq \mathsf{dmin} \\ & \wedge \dot{x}_1 = \dot{x}_2 \wedge \dot{x}_3 + \dot{x}_1 + \dot{x}_2 = 0 \end{array}$$



Jumps:

If the proportion between substances 1 and 2 is not kept the system jumps into mode 4 (**Dump**);

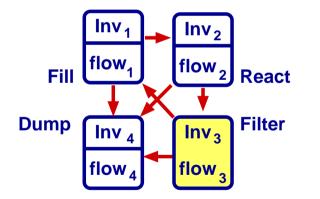
If the total quantity of substances 1 and 2 is below some minimal level min the system jumps into mode 3 (**Filter**).



Mode 3: Filter Temperature is low. Substance 3 is filtered out.

$$\begin{aligned} \text{Inv}_3 & x_1 + x_2 + x_3 \leq L_{\text{overflow}} \land \land \bigwedge_{i=1}^3 x_i \geq 0 \land \\ & -\epsilon_a \leq x_1 - x_2 \leq \epsilon_a \land x_3 \geq \min \end{aligned}$$

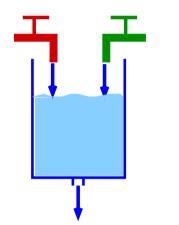
 $\mathsf{flow}_3 \qquad \dot{x}_1 = \mathsf{0} \, \land \, \dot{x}_2 = \mathsf{0} \ \land \ \dot{x}_3 \, \leq \, -\mathsf{dmax}$



Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

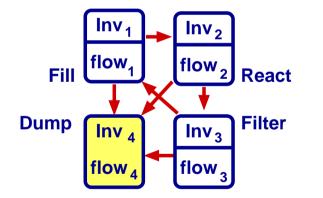
Otherwise, if the concentration of substance 3 is below some minimal level min the system jumps into mode 1 (Fill).



Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

$$Inv_4 : \bigwedge_{i=1}^3 x_i = 0$$
 and $flow_4 : \bigwedge_{i=1}^3 \dot{x}_i = 0$



Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:

- (1) $\operatorname{Init}_q \models \Psi$ for all $q \in Q$;
- (2) Ψ is invariant under jumps and flows:
 - (Flow) For every flow in mode q, the continuous variables satisfy Ψ during and at the end of the flow.
 - (Jump) For every jump according to a control switch e, if Ψ holds before the jump, it holds after the jump.

Examples:

- Is " $x_1 + x_2 + x_3 \leq L_{\text{overflow}}$ " an invariant? (no overflow)
- Is "-ε_a ≤ x₁ − x₂ ≤ ε_a" an invariant? (substances always mixed in the right proportion)

Bounded model checking: Is formula Safe preserved under runs of length $\leq k$?, i.e.:

- (1) $Init_q \models Safe for every q \in Q$;
- (2) The continuous variables satisfy Safe during and at the end of all runs of length j for all $1 \le j \le k$.

Example:

- Is "x₁ + x₂ + x₃ ≤ L_{overflow}" true after all runs of length ≤ k starting from a state with e.g. x₁ = x₂ = x₃ = 0?
- Is "-ε_a ≤ x₁ − x₂ ≤ ε_a" true after all runs of length ≤ k starting from a state with x₁ = x₂ = x₃ = 0?

Reductions of verification problems to linear arithmetic

(1) Mode invariants, initial states and guards of mode switches are described as conjunctions of linear inequalities.

Example:
$$Inv_q = \bigwedge_{j=1}^{m_q} (\sum_{i=1}^n a_{ij}^q x_i \le a_j^q)$$
 can be expressed by:
 $Inv_q(x_1(t), \dots, x_n(t)) = \bigwedge_{j=1}^{m_q} (\sum_{i=1}^n a_{ij}^q x_i(t) \le a_j^q)$

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities: $flow_q = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i \leq c_j^q)$, i.e. $flow_q(t) = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i(t) \leq c_j^q)$.

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flow_q =
$$\bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i \le c_j^q)$$
, i.e. flow_q(t) = $\bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i(t) \le c_j^q)$.

Approach: Express the flow conditions in $[t_0, t_1]$ without referring to derivatives. Flow_q(t₀, t₁): $\forall t(t_0 \le t \le t_1 \rightarrow \ln v_q(\overline{x}(t))) \land \forall t, t'(t_0 \le t \le t' \le t_1 \rightarrow \underline{flow}_q(t, t')).$ where: $\underline{flow}_q(t, t') = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q(x_i(t') - x_i(t)) \le c_j^q(t' - t)).$

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities: $flow_q = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i \leq c_j^q)$, i.e. $flow_q(t) = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q \dot{x}_i(t) \leq c_j^q)$.

Approach: Express the flow conditions in $[t_0, t_1]$ without referring to derivatives. Flow_q(t₀, t₁) : $\forall t(t_0 \le t \le t_1 \rightarrow \text{Inv}_q(\overline{x}(t))) \land \forall t, t'(t_0 \le t \le t' \le t_1 \rightarrow \underline{\text{flow}}_q(t, t')).$ where: $\underline{\text{flow}}_q(t, t') = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q(x_i(t') - x_i(t)) \le c_j^q(t' - t)).$

Remark: Flow_q(t_0 , t_1) contains universal quantifiers. Locality results: Sufficient to use the instances at t_0 and t_1

 $\operatorname{Flow}_{q}^{\operatorname{Inst}}(t_{0}, t_{1}) : \operatorname{Inv}_{q}(\overline{x}(t_{0}))) \land \operatorname{Inv}_{q}(\overline{x}(t_{1}))) \land \underline{\operatorname{flow}}_{q}(t_{0}, t_{1})).$

Theorem. The following are equivalent for any LHA: (1) Ψ (a convex predicate) is an invariant of the LHA; (2) For all $q \in Q$, $e = (q, q') \in E$, the following are unsatisfiable: $F_{\mathsf{Flow}}(q) \qquad \Psi(\overline{x}(t_0)) \wedge \mathsf{Flow}_q(t_0, t) \wedge \neg \Psi(\overline{x}(t)) \wedge t \geq t_0$ $F_{\text{jump}}(e) \qquad \Psi(\overline{x}(t)) \wedge \text{Jump}_{e}(\overline{x}(t), \overline{x'}(0)) \wedge \text{Inv}_{q'}(\overline{x'}(0)) \wedge \neg \Psi(\overline{x'}(0))$ (3) For all $q \in Q$, $e = (q, q') \in E$, the following are unsatisfiable: $F_{\mathrm{flow}}(q) \qquad \Psi(\overline{x}(t_0)) \wedge \mathrm{Inv}_q(\overline{x}(t_0)) \wedge \underline{\mathrm{flow}}_q(t_0, t) \wedge \mathrm{Inv}_q(\overline{x}(t)) \wedge \neg \Psi(\overline{x}(t)) \wedge t \geq t_0$ $F_{\mathsf{iump}}(e) \qquad \Psi(\overline{x}(t)) \wedge \mathsf{Jump}_{e}(\overline{x}(t), \overline{x'}(0)) \wedge \mathsf{Inv}_{q'}(\overline{x'}(0)) \wedge \neg \Psi(\overline{x'}(0))$

• Flow_q(t₀, t): $\forall t'(t_0 \leq t' \leq t \rightarrow \operatorname{Inv}_q(\overline{x}(t'))) \land \forall t', t''(t_0 \leq t' \leq t' \leq t \rightarrow \underline{\operatorname{flow}}_q(t', t'')).$

• $\underline{\text{flow}}_q(t_0, t) = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q(x_i(t) - x_i(t_0)) \le c_j^q(t - t_0)).$

Theorem. The following are equivalent for any LHA:

(1) Ψ (a convex predicate) is an invariant of the LHA;

Invariant checking: Reduction to checking the satisfiability of conjunctions of linear inequalities \mapsto can be checked in PTIME [Khachian]

Parametric systems: Use QE to generate constraints on parameters which guarantee that Ψ invariant \mapsto can be done in EXPTIME in general; if constraints in $UTVPI^{\neq}$: PTIME [Koubarakis, Skiadoupoulos]

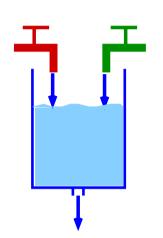
(3) For all $q \in Q$, $e = (q, q') \in E$, the following are unsatisfiable:

 $F_{\mathsf{flow}}(q) \qquad \Psi(\overline{x}(t_0)) \wedge \mathsf{Inv}_q(\overline{x}(t_0)) \wedge \underline{\mathsf{flow}}_q(t_0,t) \wedge \mathsf{Inv}_q(\overline{x}(t)) \wedge \neg \Psi(\overline{x}(t)) \wedge t \geq t_0$

 $F_{\mathsf{jump}}(e) \qquad \Psi(\overline{x}(t)) \wedge \mathsf{Jump}_{e}(\overline{x}(t), \overline{x}'(0)) \wedge \mathsf{Inv}_{q'}(\overline{x}'(0)) \wedge \neg \Psi(\overline{x}'(0))$

 $\underline{\mathrm{flow}}_q(t_0, t_1) = \bigwedge_{j=1}^{n_q} (\sum_{i=1}^n c_{ij}^q(x_i(t_1) - x_i(t_0)) \leq c_j^q(t_1 - t_0)).$

Example

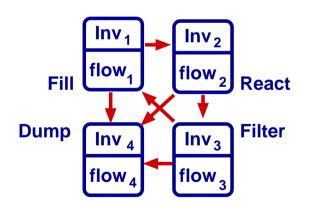


Invariant:

 $\phi_{\mathsf{safe}}(x_1, x_2, x_3) : x_1 + x_2 + x_3 \leq \mathcal{L}_{\mathsf{overflow}} \land -\epsilon \leq x_1 - x_2 \leq \epsilon.$

We assume that $L_f < L_{\text{overflow}}$ and $\epsilon_a < \epsilon$.

 $\phi_{\rm safe}$ is an invariant iff



- for every mode $q \in \{1, 2, 3, 4\}$ $F_{\text{flow}}(q)$ unsat.: $\phi_{\text{safe}}(\overline{x}(0)) \wedge \text{Inv}_q(\overline{x}(0)) \wedge \underline{\text{flow}}_q(\overline{x}, t) \wedge \text{Inv}_q(\overline{x}(t)) \wedge \neg \phi_{\text{safe}}(\overline{x}(t))$
- $F_{Jump}(e)$ is unsatisfiable for all $e \in E$.

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]

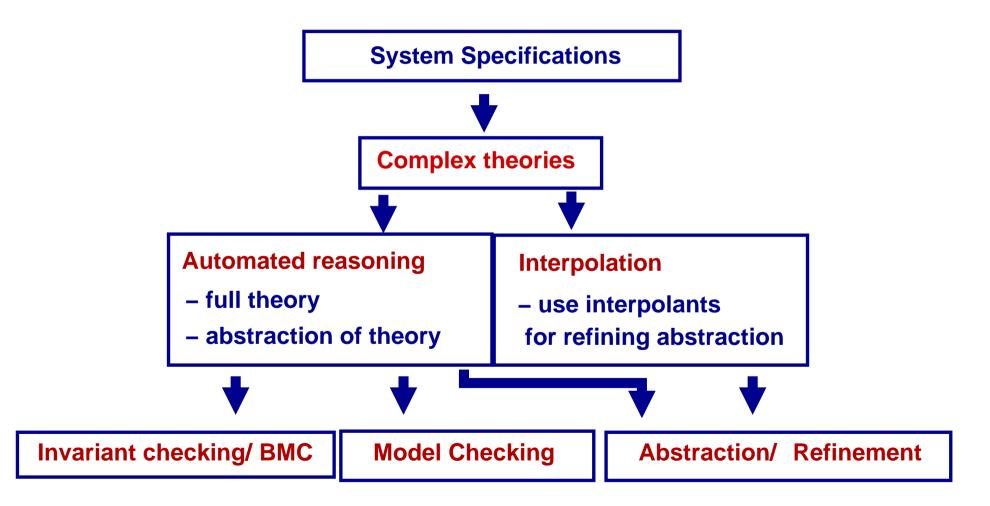
use the capabilities of H-PILoT of generating counterexamples

- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

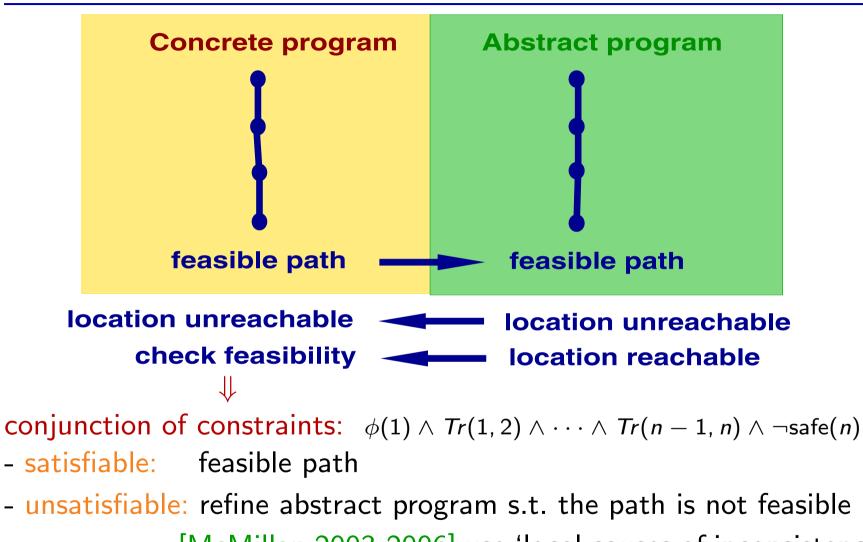
Modeling/Formalization



Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification



[McMillan 2003-2006] use 'local causes of inconsistency' \mapsto compute interpolants

Summary

• Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers: Z3: http://z3.codeplex.com/ CVC4: http://cvc4.cs.nyu.edu/web/ Yices: http://yices.csl.sri.com/

• Ideas about how to use them for verification

More details on Specification, Model Checking, Verification:

Next semester: Formal Specification and Verification

Decision procedures for other classes of theories/Applications"

Next semester: Seminar "Decision Procedures and Applications"

Forschungspraktikum BSc/MSc Theses in the area