
Decision Procedures in Verification

Applications

6.2.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Verification

Modeling/Formalization

Automated reasoning

− full theory

− abstraction of theory

Interpolation

− use interpolants
 for refining abstraction

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specifications

Complex theories

2

Examples: Verification

S specification 7→ ΣS signature of S ; TS theory of S ; TS transition system

Init(x); Update(x , x′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Safe(x) (Safe holds in the initial state)

(2) |=TS
Safe(x)∧Update(x , x′)→Safe(x′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ Update1(x0, x1) ∧ · · · ∧ Updaten(xj−1, xj) ∧ ¬Safe(xj) |=TS
⊥

3

Verification

Problems

• Invariant checking, bounded model checking

Theories

• Theories of arrays

• Theories of pointer structures

• recursively defined functions

• sets

• ...

4

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Number of trains: n ≥ 0 Z

Minimum and maximum speed of trains: 0 ≤ min < max R

Minimum secure distance: lalarm > 0 R

Time between updates: ∆t > 0 R

Train positions before and after update: pos(i), pos′(i) : Z → R

5

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Update(pos, pos′) : • ∀ i (i = 0 → pos(i) + ∆t∗min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

• ∀ i (0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) ≥ lalarm

→ pos(i) + ∆t ∗ min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

...

6

Example

Safety property: No collisions Safe(pos) : ∀ i , j(i<j→pos(i)>pos(j))

Inductive invariant: Safe(pos)∧Update(pos, pos′)∧¬Safe(pos′) |=TS
⊥

where TS is the extension of the (disjoint) combination R ∪ Z

with two functions, pos, pos′ : Z → R

Our idea: Use chains of “instantiation” + reduction.

7

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Safe(pos)

T0 T0 = R ∪ Z

8

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Safe(pos) T1 ∪ G ′(pos) |=⊥

⇓

T0 T0 = R ∪ Z T0 ∪ G ′′ |=⊥

Φ(c, cpos′ , dpos, n, lalarm, min,max,∆t) |=⊥

Method 1: SAT checking/ Counterexample generation

Method 2: Quantifier elimination

relationships between parameters which guarantee safety

9

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

• Take into account also:

− Emergency messages

− Durations

• Specification language: CSP-OZ-DC

− Reduction to satisfiability in theories for which

decision procedures exist

• Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC 7→ Transition constr. 7→ Decision procedures (H-PILoT)

10

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

11

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Approach:

• Decompose the system in trajectories (linear rail tracks; may overlap)

• Task 1: - Prove safety for trajectories with incoming/outgoing trains

- Conclude that for control rules in which trains have sufficient

freedom (and if trains are assigned unique priorities) safety

of all trajectories implies safety of the whole system

• Task 2: - General constraints on parameters which guarantee safety

12

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Data structures:

p1: trains

• 2-sorted pointers

p2: segments

• scalar fields (f :pi→R, g :pi→Z)

• updates efficient decision procedures (H-PiLoT)

13

Example: Controller for line track (RBC)

︸
︷
︷

︸

In
te
rf
a
ce

︸
︷
︷

︸

C
S
P

p
ar
t

︸
︷
︷

︸

D
a
ta

cl
a
ss
es

︸
︷
︷

︸

S
ta
te

a
n
d
In
it
sc
h
em

a

︷
︷

︸

U
p
d
a
te

ru
le
s

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

2 (leave → main)

2 (updSpd → State1))

State1
c
= ((enter → State1)

2 (leave → State1)

2 (req → State2))

State2
c
= ((alloc → State3)

2 (enter → State2)

2 (leave → State2))

State3
c
= ((enter → State3)

2 (leave → State3)

2 (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

∀ t : TrainΓtid(t) > 0
∀ t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)
∀ s : SegmentΓprevs(nexts(s)) = s

∀ s : SegmentΓnexts(prevs(s)) = s

∀ s : SegmentΓsid(s) > 0
∀ s : SegmentΓsid(nexts(s)) > sid(s)
∀ s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)
∀ s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

∀ s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

∀ s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

∀ s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

∀ t : TrainΓtrain(segm(t)) = t

∀ t : TrainΓnext(prev(t)) = t

∀ t : TrainΓprev(next(t)) = t

∀ t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))
∀ t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))
∀ t : TrainΓalloc(segm(t)) = tid(t)
∀ t : TrainΓalloc(nexts(segm(t))) = tid(t)

∨ length(segm(t)) − bd(spd(t)) > pos(t)
∀ s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

∀ t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))
∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}
∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

14

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

15

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

2(leave→main) 2(leave→State1) 2(leave→State2) 2(leave→State3)

2(enter→main)) 2(enter→State1)) 2(enter→State2)) 2(enter→State3))

−−−

16

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

17

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

9

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

10

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

∀ t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))
∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}
∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

10

Modular Verification

COD 7→ ΣS signature of S ; TS theory of S ; TS transition constraint system

specification Init(x); Update(x , x ′)

Given: Safe(x) formula (e.g. safety property)

• Invariant checking

(1) |=TS
Init(x) → Safe(x) (Safe holds in the initial state)

(2) |=TS
Safe(x)∧Update(x , x′)→Safe(x′) (Safe holds before ⇒ holds after update)

• Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
i.e. for all 0 ≤ j ≤ k:

Init(x0) ∧ Update1(x0, x1) ∧ · · · ∧ Updaten(xj−1, xj) ∧ ¬Safe(xj) |=TS
⊥

11

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

12

Trains on a linear track

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

Proof task:

Safe(pos, next, prev, spd) ∧ SpeedUpdate(pos, next, prev, spd, spd′) → Safe(pos′, next, prev, spd′)

13

Incoming and outgoing trains

14

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt(t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt(t)

15

Incoming and outgoing trains

16

Safety property

Safety property we want to prove: no two trains ever occupy the same track

segment:

(Safe) := ∀ t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

(Inv(i)) |= (Safe) for all locations i

and that the invariants are preserved under all transitions of the system,

(Inv(i)) ∧ (Update) |= (Inv′(j))

whenever (Update) is a transition from location i to j .

17

Other Applications

Verification of “Hybrid automata”

18

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react. The resulting

product is filtered out; then the procedure is repeated.

Check:

• No overflow

• Substances always in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

Parametric description:

• Determine values for parameters

such that this is the case

19

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1
.
x1 ≥dmin ∧

.
x2≥dmin ∧

.
x3=0 ∧ −δa≤

.
x1 −

.
x2≤δa

Jumps: (1,4)

If proportion not kept: system jumps into mode 4 (Dump)

e1 guarde1
(x1, x2, x3) = x1−x2≥ǫa

(from 1 to 4) jumpe1
(x1, x2, x3, x

′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=0

e2 guarde1
(x1, x2, x3) = x1−x2≤ − ǫa

(from 1 to 4) jumpe1
(x1, x2, x3, x

′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=0

20

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1
.
x1≥dmin ∧

.
x2≥dmin ∧

.
x3=0 ∧ −δa≤

.
x1−

.
x2≤δa

Jumps: (1,2)

If the total quantity of substances exceeds level Lf (tank

filled) the system jumps into mode 2 (React).

e = (1, 2) guard(1,2)(x1, x2, x3) = x1+x2+x3≥Lf

jump(1,2)(x1, x2, x3, x
′

1 , x
′

2 , x
′

3) =
∧3
i=1 x′

i
=xi

21

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 2: React Temperature is high. Substances 1 and 2 react.

The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

Inv2 Lf ≤ x1 + x2 + x3 ≤ Loverflow ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ max

flow2
.
x1 ≤ −dmax ∧

.
x2 ≤ −dmax ∧

.
x3 ≥ dmin

∧
.
x1 =

.
x2 ∧

.
x3 +

.
x1 +

.
x2 = 0

Jumps:

If the proportion between substances 1 and 2 is not kept

the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

22

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Inv

flow

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 ≤ Loverflow ∧
∧3
i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ x3 ≥ min

flow3
.
x1 = 0 ∧

.
x2 = 0 ∧

.
x3 ≤ −dmax

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

23

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Inv4 :
∧3
i=1 xi = 0 and flow4 :

∧3
i=1

.
xi= 0.

24

Simple verification problems

Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:

(1) Initq |= Ψ for all q ∈ Q;

(2) Ψ is invariant under jumps and flows:

(Flow) For every flow in mode q, the continuous variables satisfy Ψ during and

at the end of the flow.

(Jump) For every jump according to a control switch e, if Ψ holds before the

jump, it holds after the jump.

Examples:

• Is “x1 + x2 + x3 ≤ Loverflow” an invariant? (no overflow)

• Is “−ǫa ≤ x1 − x2 ≤ ǫa” an invariant?

(substances always mixed in the right proportion)

25

Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length ≤ k?, i.e.:

(1) Initq |= Safe for every q ∈ Q;

(2) The continuous variables satisfy Safe during and at the end of all runs of length

j for all 1≤j≤k.

Example:

• Is “x1 + x2 + x3 ≤ Loverflow” true after all runs of length ≤ k starting from a

state with e.g. x1 = x2 = x3 = 0?

• Is “−ǫa ≤ x1 − x2 ≤ ǫa” true after all runs of length ≤ k starting from a state

with x1 = x2 = x3 = 0?

26

Simple verification problems

Reductions of verification problems to linear arithmetic

(1) Mode invariants, initial states and guards of mode switches

are described as conjunctions of linear inequalities.

Example: Invq =
∧mq

j=1(
∑n

i=1 a
q
ij
xi≤a

q
j
) can be expressed by:

Invq(x1(t), . . . , xn(t)) =
∧mq

j=1(
∑n

i=1 a
q
ij
xi (t) ≤ a

q
j
)

27

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

28

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

Approach: Express the flow conditions in [t0, t1] without referring to derivatives.

Flowq(t0, t1) : ∀ t(t0≤t≤t1→Invq(x(t))) ∧ ∀ t, t′(t0≤t≤t′≤t1→flowq(t, t
′)).

where: flowq(t, t
′) =

∧nq
j=1(

∑n
i=1 c

q
ij (xi (t

′)− xi (t)) ≤ c
q
j (t

′ − t)).

29

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowq =
∧nq

j=1(
∑n

i=1 c
q
ij

.
x i≤c

q
j
), i.e. flowq(t) =

∧nq
j=1(

∑n
i=1 c

q
ij

.
x i (t) ≤ c

q
j
).

Approach: Express the flow conditions in [t0, t1] without referring to derivatives.

Flowq(t0, t1) : ∀ t(t0≤t≤t1→Invq(x(t))) ∧ ∀ t, t′(t0≤t≤t′≤t1→flowq(t, t
′)).

where: flowq(t, t
′) =

∧nq
j=1(

∑n
i=1 c

q
ij
(xi (t

′)− xi (t)) ≤ c
q
j
(t′ − t)).

Remark: Flowq(t0, t1) contains universal quantifiers.

Locality results: Sufficient to use the instances at t0 and t1

FlowInst
q (t0, t1) : Invq(x(t0))) ∧ Invq(x(t1))) ∧ flowq(t0, t1)).

30

Invariant checking

Theorem. The following are equivalent for any LHA:

(1) Ψ (a convex predicate) is an invariant of the LHA;

(2) For all q ∈ Q, e = (q, q′) ∈ E , the following are unsatisfiable:

FFlow(q) Ψ(x(t0)) ∧ Flowq(t0, t) ∧ ¬Ψ(x(t)) ∧ t ≥ t0

Fjump(e) Ψ(x(t))∧Jumpe(x(t), x
′(0))∧Invq′ (x

′(0))∧¬Ψ(x′(0))

(3) For all q ∈ Q, e = (q, q′) ∈ E , the following are unsatisfiable:

Fflow(q) Ψ(x(t0)) ∧ Invq(x(t0)) ∧ flowq(t0, t) ∧ Invq(x(t)) ∧ ¬Ψ(x(t)) ∧ t ≥ t0

Fjump(e) Ψ(x(t)) ∧ Jumpe (x(t), x
′(0)) ∧ Invq′ (x

′(0)) ∧ ¬Ψ(x′(0))

• Flowq (t0, t): ∀ t′(t0≤t′≤t→Invq (x(t
′))) ∧ ∀ t′ , t′′(t0≤t′≤t′′≤t→flowq (t

′ , t′′)).

• flowq (t0, t) =
∧nq
j=1

(
∑n

i=1 c
q
ij
(xi (t) − xi (t0)) ≤ c

q
j
(t − t0)).

31

Invariant checking

Theorem. The following are equivalent for any LHA:

(1) Ψ (a convex predicate) is an invariant of the LHA;

(2) For all q ∈ Q, e = (q, q′) ∈ E , the following are unsatisfiable:

FFlow(q) Ψ(x(t0)) ∧ Flowq(t0, t) ∧ ¬Ψ(x(t)) ∧ t ≥ t0

Fjump(e) Ψ(x(t))∧Jumpe(x(t), x
′(0))∧Invq′ (x

′(0))∧¬Ψ(x′(0))

(3) For all q ∈ Q, e = (q, q′) ∈ E , the following are unsatisfiable:

Fflow(q) Ψ(x(t0)) ∧ Invq(x(t0)) ∧ flowq(t0, t) ∧ Invq(x(t)) ∧ ¬Ψ(x(t)) ∧ t ≥ t0

Fjump(e) Ψ(x(t)) ∧ Jumpe (x(t), x
′(0)) ∧ Invq′ (x

′(0)) ∧ ¬Ψ(x′(0))

flowq(t0, t1) =
∧nq

j=1(
∑n

i=1 c
q
ij
(xi (t1)− xi (t0)) ≤ c

q
j
(t1 − t0)).

Invariant checking: Reduction to checking the satisfiability of conjunctions

of linear inequalities 7→ can be checked in PTIME [Khachian]

Parametric systems: Use QE to generate constraints on parameters which

guarantee that Ψ invariant 7→ can be done in EXPTIME in general;

if constraints in UTVPI 6=: PTIME [Koubarakis, Skiadoupoulos]

32

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Invariant:

φsafe(x1, x2, x3) : x1+x2+x3≤Loverflow ∧ −ǫ≤x1−x2≤ǫ.

We assume that Lf < Loverflow and ǫa < ǫ.

φsafe is an invariant iff

• for every mode q ∈ {1, 2, 3, 4} Fflow(q) unsat.:

φsafe(x(0))∧Invq(x(0))∧flowq(x , t)∧Invq(x(t))∧¬φsafe(x(t))

• FJump(e) is unsatisfiable for all e ∈ E .

33

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]

use the capabilities of H-PILoT of generating counterexamples

- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

34

Verification

Modeling/Formalization

Automated reasoning

− full theory

− abstraction of theory

Interpolation

− use interpolants
 for refining abstraction

Invariant checking/ BMC Model Checking Abstraction/ Refinement

System Specifications

Complex theories

35

Other interesting topics

• Generate invariants

• Verification by abstraction/refinement

36

Abstraction-based Verification

Abstract program

feasible path

location reachable

Concrete program

feasible path

location unreachable location unreachable

check feasibility

⇓

conjunction of constraints: φ(1) ∧ Tr(1, 2) ∧ · · · ∧ Tr(n − 1, n) ∧ ¬safe(n)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

[McMillan 2003-2006] use ‘local causes of inconsistency’

7→ compute interpolants

37

Summary

• Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:

Z3: http://z3.codeplex.com/

CVC4: http://cvc4.cs.nyu.edu/web/

Yices: http://yices.csl.sri.com/

• Ideas about how to use them for verification

More details on Specification, Model Checking, Verification:

Next semester: Formal Specification and Verification

Decision procedures for other classes of theories/Applications”

Next semester: Seminar “Decision Procedures and Applications”

Forschungspraktikum

BSc/MSc Theses in the area

38

