Decision Procedures in Verification

Applications
6.2.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Verification

Modeling /Formalization

System Specifications

L/

Complex theories

\ 4 \

Automated reasoning

— full theory
— abstraction of theory

— use interpolants
for refining abstraction

Interpolation

\

| A S

Invariant checking/ BMC

Model Checking

Abstraction/ Refinement

Examples: Verification

S specification — 2 g signature of S; Tg theory of S; Tg transition system
Init(X); Update(X, x”)

Given: Safe(x) formula (e.g. safety property)

e Invariant checking
(1) =75 Init(x) — Safe(x) (Safe holds in the initial state)
(2) =7, Safe(X)AUpdate(x, x’)—Safe(x”) (Safe holds before = holds after update)

e Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
l.e. for all 0 < j < k:

Init(xp) A Update;(xp, x1) A --- A Update,(xj_1, xj) A =Safe(x;) =7 L

Verification

Problems

e Invariant checking, bounded model checking
Theories

e Theories of arrays

e T heories of pointer structures

e recursively defined functions

® sets

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

uuuuuuuu o I~ S~ W
Number of trains: n>0 Z
Minimum and maximum speed of trains: 0 < min <max R
Minimum secure distance: Liarm > 0 R
Time between updates: At >0 R
Train positions before and after update: pos(i), pos’(i) .7 — R

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

e
_jw!fll | ¥
= I‘I| II
-
o £ ,l I| b
i / I—ql %
-
- re *
- |
-] ,I _
>
o I .
Fd
e ry §
-
ol 1y s
v i y
T S R
gop———ng- g SV Ao

[1
uuu

Update(pos, pos’) : e Vi (i =0 — pos(i) + Atxmin < pos’(i) < pos(i) + Atxmax)

e Vi(0<i<n A pos(i—1) >0 A pos(i —1) — pos(i) > lyjarm
— pos(i) + At * min < pos’(i) < pos(i) + Atxmax)

Example

Safety property: No collisions Safe(pos) : Vi, j(i<j—pos(i)>pos(j))

Inductive invariant: ~ Safe(pos)AUpdate(pos, pos’)A—Safe(pos’) =7 L

where Ts is the extension of the (disjoint) combination R U Z
with two functions, pos, pos’ : Z — R

Our idea: Use chains of “instantiation” <+ reduction.

Example

To show:
T2 = T1 U Update(pos, pos’) T2 U =Safe(pos’) =L

G

T1 = To U Safe(pos)

To=RUZ

Example

To show:
7> = T1 U Update(pos, pos’) T> U =Safe(pos’) =L

~

G

U
T1 = To U Safe(pos) 71 U G'(pos) =L

Y
To=RUZ ToUG” =1

d(c, Epos/,apos, N, lajarm, Min, max, At) =L

Method 1: SAT checking/ Counterexample generation
Method 2: Quantifier elimination

relationships between parameters which guarantee safety

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]
e Take into account also:
— Emergency messages

— Durations

e Specification language: CSP-OZ-DC

— Reduction to satisfiability in theories for which

decision procedures exist

e Tool chain: [Faber, Ihlemann, Jacobs, VS|
CSP-OZ-DC — Transition constr. — Decision procedures (H-PILoT)

10

Example 2: Parametric topology

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

ol

Assumptions:

e No cycles

e in-degree (out-degree) of associated graph at most 2.

11

Parametricity and modularity

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Approach:
e Decompose the system in trajectories (linear rail tracks; may overlap)
e Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient
freedom (and if trains are assigned unique priorities) safety
of all trajectories implies safety of the whole system
e Task 2: - General constraints on parameters which guarantee safety

12

Parametricity and modularity

e Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:
e No cycles
e in-degree (out-degree) of associated graph at most 2.

Data structures:

p1: trains E:«E

+2sorted piners AoiL b

p2: segments [
A \-/‘\/ _/_/ _/ _/
e scalar fields (f:p;—R, g:pi—7Z)

e updates efficient decision procedures (H-PiLoT)

13

Example: Controller for line track (

RBC

RBC

method leave : [Is? : Segment; It? : Train]

local_chan alloc, req, updPos, updSpd

main £ ((enter — main)
O (leave — main)
m] (updSpd — Statel))
Statel £ ((enter — Statel)
O (leave — Statel)
m] (req — State2))
— SegmentData
train : Segment — Train [Train on segment]
req : Segment — 7 [Requested by train]
alloc : Segment — Z [Allocated by train]

sd : SegmentData
td : TrainData

V t: Trainltid(t) > 0
V t1,t2 : Train | t1 & t2Ttid(t1) +# tid(t2)
V s : SegmentTl prevs(nexts(s)) =
V s : Segmentl nexts(prevs(s)) =
Vs : Segment[sid(s) > 0
V s : Segmentlsid(nexts(s)) > sid(s)
V sl, 52 : Segment | sl 5 s2[sid(s1) # sid(s2)
V's : Segment | s # snill length(s) > d + gmax - At
V' s : Segment | s & snill0 < Imax(s) A Imax(s) < gmax
V's : SegmentlImax(s) > Imax(prevs(s)) — decmax - At
V s1, s2 : SegmentT tid(incoming(sl)) # tid(train(s2))

)
S

method enter : [s17 : Segment; t0? : Train; t1? : Train; t27? : Train]

State2 £ ((alloc — State3)

u} (enter — State2)
u} (leave — State2))
State3 £ ((enter — State3)
[m] (leave — State3)

m] (updPos — main))
— TrainData

segm : Train — Segment
next : Train — Train
spd : Train — R

prev : Train — Train

Train segment

g
[Next train]
[Speed]

pos : Train — R [Current position]

[Prev. train]

— Init

V t : Trainltrain(segm(t)) = t
V t : Trainl next(prev(t)) = t
V t : Trainl prev(next(t)) = t
V t: TrainT0 < pos(t) < length(segm(t))
YV t: Trainl0 < spd(t) < Imax(segm(t))
V t : Trainl alloc(segm(t)) = tid(t)
V t : Trainl alloc(nexts(segm(t))) = tid(t)
V length(segm(t)) — bd(spd(t)) > pos(t)
V s : Segmentlsegm(train(s)) = s

—_effect_updSpd

A(spd)

Fspd’ (t) = max{0, spd(t) — decmax - At}

V't : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0

Imax{0, spd(t) — decmax - At} < spd”(t) < Imax(segm(t))
V' t : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)

Imax{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
V't : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)

14

Interface

CSP part

Data classes

State and Init schema

pdate rules

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

(Leave) (Leave)

e updSpd (speed update) —» @

e req (request update)

(Position) (Request)

e alloc (allocation update)

o (position update)

Between these events, trains may leave or enter the track (at specific
segments), modeled by the events leave and enter.

15

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events
with corresponding COD schemata:

CSP:

method enter : [s17 : Segment; t07 : Train; t17 : Train; t27 : Train]
method leave : [Is? : Segment; It? : Train]

local_chan alloc, req, , updSpd

main=((updSpd— Statel) Statel=((req—State2) State2=((alloc— State3) State3=((

—main)
O (/eave—main) O (leave— Statel) O (leave— State2) O (leave— State3)
O(enter—main)) O (enter— Statel)) O (enter— State2)) O (enter— State3))

16

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

17

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values
during runs of the system

Data structures:

/\\:\/\ N

A

S A A A A A A

train: trains
e 2-sorted pointers

segm: segments

_ SegmentData _ TrainData

train : Segment — Train

req : Segment — 7
alloc : Segment — 7

[Train on segment]
[Requested by train]

[Allocated by train]

segm : Train — Segment

[Train segment]
next : Train — Train [Next train]
spd : Train — R [Speed]
pos : Train — R [Current position]
prev : Train — Train [Prev. train]

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 1. Data classes declare function symbols that can change their values
during runs of the system, and are used in the OZ part of the
specification.

e 2. Axioms: define properties of the data structures and system
parameters which do not change

e gmax : R (the global maximum speed),

e decmax : R (the maximum deceleration of trains),

e d : R (a safety distance between trains),

e Properties of the data structures used to model trains/segments

10

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

e 3. Init schema. describes the initial state of the system.
e trains - doubly-linked list; placed correctly on the track segments
e all trains respect their speed limits.

e 4. Update rules specify updates of the state space executed when the
corresponding event from the CSP part is performed.
Example: Speed update

effect_updSpd
A(spd)

YV t : Train | pos(t) < length(segm(t)) — d A spd(t) — decmax - At > 0

max{0, spd(t) — decmax - At} < spd’(t) < Imax(segm(t))
YV t : Train | pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)

max{0, spd(t) — decmax - At} < spd’(t) < min{Imax(segm(t)), Imax(nexts(segm(t)))}
YV t : Train | pos(t) > length(segm(t)) — d N — alloc(nexts(segm(t))) = tid(t)

Fspd’ (t) = max{0, spd(t) — decmax - At}

10

Modular Verification

COD — 2 s sighature of S; 75 theory of S; Ts transition constraint system

specification Init(Xx); Update(x, x’)

Given: Safe(x) formula (e.g. safety property)

e Invariant checking
(1) =75 Init(x) — Safe(x) (Safe holds in the initial state)
(2) =7, Safe(X)AUpdate(x, x’)—Safe(x”) (Safe holds before = holds after update)

e Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps,
l.e. for all 0 < j < k:

Init(xp) A Update;(xp, x1) A --- A Update,(xj_1, xj) A =Safe(x;) =7 L

11

Trains on a linear track

/\b\/\/—\

AL

N \\/_/U U\./ UL/

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

12

Trains on a linear track

E/ﬂ_\’}:\/\E«E

| |

|

A s A A A A T A

Example 1: Speed Update
pos(t) < length(segm(t)) —d — 0 < spd’(t) < Imax(segm(t))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) = tid(t)
— 0 < spd’(t) < min(Imax(segm(t)), Imax(nexts(segm(t))))
pos(t) > length(segm(t)) — d A alloc(nexts(segm(t))) # tid(t)
— spd’(t) = max(spd(t) — decmax, 0)

Proof task:
Safe(pos, next, prev, spd) A SpeedUpdate(pos, next, prev, spd, spd’) — Safe(pos’, next, prev, spd’)

13

Incoming and outgoing trains

AL T

\/‘\/ A

AN

74

A
\\/

14

Incoming and outgoing trains

/K\;/\ o

I
/N

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s; # nullg, t1 # null, train(s) # t1, alloc(sy) = idt(t1)

t=£t1, ids(segm(t))<ids(si), next:(t)=nulls, alloc(s;)=tid(t;) — next’(t)=t; A next’(t;)=null;
t#ty, ids(segm(t))<ids(s1), alloc(s;)=tid(t1), next;(t)#nulls, ids(segm(next:(t)))<ids(s1)
— next’ (t)=next:(t)

.t-;.étl, ids(segm(t))>ids(s;) — next’(t)=next;(t)

15

Incoming and outgoing trains

 —— \z — Eee—™>

16

Safety property

Safety property we want to prove: no two trains ever occupy the same track

segment:
(Safe) :=Vt1, to segm(t;) = segm(t2) — t; = to

In order to prove that (Safe) is an invariant of the system, we need to find a
suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

(Inv(i)) = (Safe) for all locations i

and that the invariants are preserved under all transitions of the system,

(Inv(i)) A (Update) = (Inv’(j))

whenever (Update) is a transition from location i to j .

17

Other Applications

Verification of “Hybrid automata”

18

Example

Chemical plant
Il l:L Two substances are mixed; they react. The resulting
l 1 product is filtered out; then the procedure is repeated.
1' Check:

e No overflow

v, |, [inv, e Substances always in the right proportion
o o] [iow] e e If substances in wrong proportion,
; ¥ tank can be drained in < 200s.
Dump |y . Inv 4 Filter
flow , 7 flow

Parametric description:
e Determine values for parameters
such that this is the case

19

Example

Mode 1: Fill Temperature is low, 1 and 2 do not react.

II Il Substances 1 and 2 (possibly mixed with a small quantity of 3)
l 1 are filled in the tank in equal quantities up to a margin of error.
|nV1 X1—{—X2+X3§Lf AN /\?:]_XI'ZO/\
—€3 < x1 —x2 < €3 N 0 < x3 < min

flowy x1 2dmin A xp >dmin A x3=0 A —65< x1 —x9 <4,

Inv —| 1NV Jumps: (1,4)
Fill flow , flow , React _ _ _
; ¥ If proportion not kept: system jumps into mode 4 (Dump)
Dump |y inv ., | Filter
4 — 3 e1 guarde1 (x1, X0, Xx3) = x| —Xp > €,
flow 4 flow 3 (from 1 to 4) jumpel (x1, X2, X3, X],_, xé, Xé) = /\?:1 XI-,IO

e guarde1 (x1,x0,x3) = x1 —x0 < — €5
(from 1 to 4) jumpel (x1., X2, X3, x{, xé, x?,)) = /\7?’:1 Xi’:o

20

Example

Fill

Dump

o =

!

|

Inv 4 Inv ,,
flow 1 flow 5
Inv , Inv 5
flow , flow

React

Filter

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

|nV1 X1 + xp +X3 S Lf VAN A?:lxi ZO AN
—€3 < x1 —x2 < €3 AN 0 < x3 < min

flowy x12dmin A x9 >dmin A x3=0 A —§53<x7 —xp <3,

Jumps: (1,2)

If the total quantity of substances exceeds level Lf (tank
filled) the system jumps into mode 2 (React).

e =(1,2) guard(llz) (x1,x0,x3) = x{+xp+x3 >Lf
o2y 61 7203, 5.58) = Ay o=

21

Example

Mode 2: React Temperature is high. Substances 1 and 2 react.

II II The reaction consumes equal quantities of substances 1 and 2
l 1 and produces substance 3.
Invo Lf < x1 +x0 +x3 < Loverflow N /\?:1 xp 2 0 A
—€3 < x1 —x2 < €3 N 0 < x3 < max

flowo x1 < —dmax A xo < —dmax A x3 > dmin

Inv, | S Inv,
Fill flow flow , React Jumps:
Dump In‘v . |nt3 Filter If the proportion between substances 1 and 2 is not kept
flow , “fiow 5 the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

22

Example

Fill

Dump

o =

!

|

Inv 4 Inv ,,
flow 1 flow 5
Inv , Inv 5
flow , flow

React

Filter

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Invg x1 +x0 +x3 < Loyerflow N /\?:1 xj 20 A

—€3 < x1 —x2 < €3 A x3 > min

f|OW3)-<1 =0A Xz =0 A X3 S —dmax

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

23

Example

Fill

Dump

o =

!

|

Inv 4 Inv ,,
flow 1 A flow 5
Inv , Inv 5
flow , flow ,

React

Filter

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Invy : /\?':1 x; = 0 and flowy : /\13:1 x;= 0.

24

Simple verification problems

Invariant checking: Check whether W is an invariant in a HA S, i.e.:
(1) Inity = WV for all g € Q;

(2) W is invariant under jumps and flows:

(Flow) For every flow in mode g, the continuous variables satisfy W during and
at the end of the flow.

(Jump) For every jump according to a control switch e, if W holds before the
jump, it holds after the jump.

Examples:

e Is “x1 + x2 + x3 < Loverflow an invariant? (no overflow)

o Is "—e; < x1 — xp < €; an invariant?
(substances always mixed in the right proportion)

25

Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length < k7, i.e.:
(1) Inity = Safe for every g € Q;

(2) The continuous variables satisfy Safe during and at the end of all runs of length
J for all 1<<k.

Example:

o Is “x31 + x0 + x3 < Loverflow true after all runs of length < k starting from a
state with e.g. x3 = xo = x3 = 07

o Is "—e; < x1 — x0 < €, true after all runs of length < k starting from a state
with x; = x» = x3 = 07

26

Simple verification problems

Reductions of verification problems to linear arithmetic

(1) Mode invariants, initial states and guards of mode switches
are described as conjunctions of linear inequalities.

Example: Invg = /\1'77:‘71(2721 ajix;<al) can be expressed by:

Inva(xa(t), - xn(£)) = AT (S1y adxi(t) < &)

27

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:

flowg = A2, (O°0; clx;<cf), ice. flowg(t) = A2, (3o, clxi(t) < cf).
y j j y j j

28

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalitieS'

flowg = A2, (307 cfxi<cf), ie. flowg(t) = A2 (07 cfxi(t) <).

Approach: Express the flow conditions in [ty, t1] without referring to derivatives.

Flowg(to, t1) : V t(to<t<t1—Invq(x(t))) A Vi, t'(to<t<t'<t;—flow,(t,t")).
where: flow, (£, t/) = A, (0, cl(xi(t) — xi(t)) < /(¢ —).

o v

29

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalitieS'

flowg = NI (S0 edxi<c?), ie. flowg(t) = AT (S0, clxi(t) <).

~

Approach: Express the flow conditions in [tp, t1] without referring to derivatives.

Flowg(to, t1) : V t(to<t<t1—Invq(x(t))) A Vi, t'(to<t<t'<t;—flow (t,t")).
where: flow, (t, ') = AL, (30, cl(xi(t) — xi(1)) < /(¢ — 1)).

. _

Remark: Flowq(tp, t1) contains universal quantifiers.
Locality results: Sufficient to use the instances at ty and t;

FIow'”St(t t1) : Invg(X(t0))) A Invg(X(t1))) A flow (%o, t1)).

30

Invariant checking

(Theorem. The following are equivalent for any LHA:

(1) W (a convex predicate) is an invariant of the LHA;

(2) Forall g€ Q,e =1(q,q’) € E, the following are unsatisfiable:

Friow(q) W(Xx(to)) A Flowg(to, t) A =W (X(t)) At > to

Fiump(€) V(Xx(t))AJump,(x(t), Y’(O))/\Invq/ (x’(0))A=W(x’(0))

(3) Forall g € Q,e =(q,q") € E, the following are unsatisfiable:

Fiiow(q) W(Xx(to)) N Invg(X(to)) A flow, (to, t) A Invg(X(t)) A =W(X(t)) At > to

L Fiump(€) V(x(t)) A Jump_(x(t),x’(0)) A Inv,/ (x’(0)) A =V (X’ (0))

o Flowg(tp, t): V' (1p<t/ <t—=lnvg(x(t"))) A V¢! /" (tg<t! <t"’ <t—flow,(t, 7).

J

o flowg(tg £) = A (S cfixi(6) — xi(t0)) < (¢ — 1)),

31

Invariant checking

\

(Theorem. The following are equivalent for any LHA:

(1) W (a convex predicate) is an invariant of the LHA;

-
Invariant checking: Reduction to checking the satisfiability of conjunctions

of linear inequalities — can be checked in PTIME [Khachian|

Parametric systems: Use QE to generate constraints on parameters which
guarantee that W invariant — can be done in EXPTIME in general;
if constraints in UTVPI7: PTIME [Koubarakis, Skiadoupoulos]

~

J

_
(3) Forall g€ Q,e=(q,q’) € E, the following are unsatisfiable:

Fiiow(q) W(Xx(to)) N Invg(X(to)) A flow, (to, t) A Invg(X(t)) A =W(X(t)) At > to

Fiump(e€) W(x(t)) A Jump, (X(t),X"(0)) A Inv, (X"(0)) A —=W(X’(0))

J

flow, (to, t1) = A2, (327 ¢ (xi(t1) — xi(to)) < ¢/ (1 — to)).

32

Example

Invariant:
I' |:L Gsafe (X1, X2, x3) : x1+Xx0+X3 < Loyerflow A —€<x1 —x2 <€.

‘b

We assume that Lf < Lgyerflow and €5 < €.

l @safe IS an invariant iff

e for every mode g € {1, 2, 3,4} Fqow(q) unsat.:

Inv 4 .y Inv ,
cn L1oWe) flow,) pene @safe(X(0))Alnvg (X(0))Aflow, (X, t)Alnvg (X(t))A—dsare (X(1))
5 ¥
Dump finy] [inv 5 | P e Fyymp(€) is unsatisfiable for all e € E.
flow , 7 flow ,

33

Safety property

Need additional invariants.
- generate by hand [Faber, |hlemann, Jacobs, VS, ongoing]

use the capabilities of H-PILoT of generating counterexamples

- generate automatically [VS, work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

34

Verification

Modeling /Formalization

System Specifications

L/

Complex theories

\ 4 \

Automated reasoning

— full theory
— abstraction of theory

— use interpolants
for refining abstraction

Interpolation

\

| A S

Invariant checking/ BMC

Model Checking

Abstraction/ Refinement

35

Other interesting topics

e Generate invariants

e Verification by abstraction /refinement

36

Abstraction-based Verification

Concrete program Abstract program

feasible path =—-—epme— feasible path

location unreachable —-=g=s= |ocation unreachable
check feasibility —--g=—m location reachable

4

conjunction of constraints: ¢(1) A Tr(1,2) A --- A Tr(n — 1, n) A —safe(n)
- feasible path
- refine abstract program s.t. the path is not feasible
[McMillan 2003-2006] use ‘local causes of inconsistency’
— compute interpolants

37

Summary

e Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:
/3: http://z3.codeplex.com/
CVC4: http://cvcd.cs.nyu.edu/web/
Yices: http://yices.csl.sri.com/

e Ildeas about how to use them for verification

More details on Specification, Model Checking, Verification:
Next semester: Formal Specification and Verification

Decision procedures for other classes of theories/Applications”
Next semester: Seminar “Decision Procedures and Applications”

Forschungspraktikum
BSc/MSc Theses in the area

38

