
Decision Procedures in Verification

Combinations of Decision Procedures (2)

16.1.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Decidable subclasses of FOL

Decision procedures for single theories

Uninterpreted function symbols

Decision procedures for numeric domains

Combinations of theories

The Nelson-Oppen combination procedure.

2

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T

2

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions

3

Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.

4

Implementation of propagation

Last time: Guessing variant

Guess a maximal set of literals containing the shared variables V

(arrangement: α(V ,E) = (
∧

(u,v)∈E u ≈ v ∧
∧

(u,v)6∈E u 6≈ v), where

E equivalence relation); check it for Ti ∪ φi consistency.

On the blackboard: Example 10.5 and 10.7 pages 272, 273

Example 10.6 and 10.9 pages 272, 275

from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantage: Whenever constraints are represented as Boolean

combinations of atoms, one may combine heuristics of SMT solvers

with specific features of the theories to be combined to produce the

right arrangement efficiently.

5

Implementation of propagation

Backtracking variant

Identify disjunction of equalities between shared variables entailed by

Ti ∪ φi ; make case split by adding some of these equalities to φ1,φ2.

Repeat as long as possible.

On the blackboard: Example 10.14, page 280-281, and Example 10.13, page 279,

from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantages:

- it works on the non-disjoint case as well

- can be made deterministic for combinations of convex theories

T convex iff whenever T |=
∧n

i=1 Ai →
∨m

j=1 Bj

there exists j s.t. T |=
∧n

i=1 Ai → Bj

6

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

7

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Proof: Assume that φ is satisfiable. Then φ1 ∧ φ2 satisfiable.

• The procedure cannot answer “unsatisfiable” in Step 2.

• Let (M,β) |= φ1 ∧ φ2. Assume that (M, β) |=
∧

(ci ,cj)∈E

ci ≈ cj ∧
∧

(ci ,cj) 6∈E

ci 6≈ cj

Then (M|Σ1
, β) |= φ1 ∧

∧

(ci ,cj)∈E

ci ≈ cj

(M|Σ2
, β) |= φ2 ∧

∧

(ci ,cj)∈E

ci ≈ cj

Guessing:
∧

(ci ,cj)∈E

ci ≈ cj ∧
∧

(ci ,cj) 6∈E

ci 6≈ cj “satisfiable arrangement”.

Backtracking: Procedure answers satisfiable on the corresponding branch.

8

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Completeness: Under additional hypotheses

9

Completeness

Example:
E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

10

Completeness

Example: E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

A model of E1 satisfies g(c) ≈ h(c) iff ∃e ∈ A s.t. g(e) = h(e).

Then, for all a ∈ A: a = fA(g(a), g(e)) = fA(g(a), h(e)) = e

g(c)≈h(c) ∧ k(c)6≈c unsatisfiable

11

Completeness

Another example

T1 theory admitting models of cardinality at most 2

T2 theory admitting models of any cardinality

f1 ∈ Σ1, f2 ∈ Σ2 such that Ti 6|= ∀x , y fi (x) = fi (y).

φ = f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

φ1 = f1(c1)6≈f1(c2) φ2 = f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

The Nelson-Oppen procedure returns “satisfiable”

T1 ∪ T2 |= ∀x , y , z(f1(x)6≈f1(y) ∧ f2(x)6≈f2(z) ∧ f2(y)6≈f2(z)

→ (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z))

f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3) unsatisfiable

12

Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

T is stably infinite iff for every quantifier-free formula φ

φ satisfiable in T iff φ satisfiable in an infinite model of T .

Note: This restriction is not mentioned in [Nelson Oppen 1979];

introduced by Oppen in 1980.

13

Completeness

Guessing version: C set of constants shared by φ1,φ2

R equiv. relation assoc. with partition of C 7→ar(C ,R) =
∧

R(c ,d)

c ≈ d ∧
∧

¬R(c ,d)

c 6≈ d

Lemma. Assume that there exists a partition of C s.t. φi ∧ ar(C ,R) is

Ti -satisfiable. Then φ1 ∧ φ2 is T1 ∪ T2-satisfiable.

Idea of proof: Let Ai ∈ Mod(Ti) s.t. Ai |=φi∧ar(C ,R). Then cA1=dA1 iff cA2=dA2 .

Let i : {cA1 | c ∈ C} → {cA2 | c ∈ C}, i(cA1) = cA2 well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A1,A2 have the same cardinality

Let h : A1 → A2 bijection s.t. h(cA1) = cA2

Use h to transfer the Σ1-structure on A2.

Theorem. If T1, T2 are both stably infinite and the shared signature is empty

then the Nelson-Oppen procedure is sound, complete and terminating.

Thus, it transfers decidability of ground satisfiability from T1, T2 to T1 ∪ T2.

14

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

(a) decide whether there is a disjunction of equalities between variables

(b) investigate different branches corresponding to disjunctions

15

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching

16

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in PTIME

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in PTIME

17

Complexity

In general: non-deterministic procedure

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in NP

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in NP

18

Extensions of the Nelson-Oppen procedure

• relax the stable infiniteness requirement

• relax the requirement that the theories have disjoint signatures

19

Extensions of the Nelson-Oppen procedure

• relax the stable infiniteness requirement

• relax the requirement that the theories have disjoint signatures

Main idea:

Find situations in which Ti models of φi , i = 1, 2 can be

“amalgamated” to a T1 ∪ T2 model of φ1 ∧ φ2.

[Tinelli,Zarba’03] One theory “shiny” (for each satisf. constraint we can

compute a finite k s.t. the theory has models of every cardinality λ ≥ k)

[Tinelli,Ringeissen’03] Theories sharing absolutely free constructors

[Ghilardi’04] Model theoretical conditions.

20

From conjunctions to arbitrary combinations

Until now:

check satisfiability for conjunctions of literals

Question:

how to check satisfiability of sets of clauses?

21

Overview

• Propositional logic

- resolution

- DPLL

• First-order logic

- resolution

Satisfiability w.r.t. theories

• Ground formulae

- conjunctions of literals:

specialized methods

- clauses: DPLL(T) ⇐ TODAY

• Formulae with quantifiers

- reduction to SAT for ground formulae

instantiation ⇐ NEXT WEEK

(situations when sound and complete)

- resolution (mod T)

22

3.6 The DPLL(T) algorithm

23

Reminder: Propositional SAT

The DPLL algorithm

24

A succinct formulation

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.

25

A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′||F if







there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .

26

Example

Assignment: Clause set:

∅ ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1P2P3 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2P3P4 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1P2P3P4P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2P3P4P5¬P6 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Backtrack)

P1P2P3P4¬P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ...

27

DPLL with learning

The DPLL system with learning consists of the four transition rules of the

Basic DPLL system, plus the following two additional rules:

Learn

M||F ⇒ M||F ,C if all atoms of C occur in F and F |= C

Forget

M||F ,C ⇒ M||F if F |= C

In these two rules, the clause C is said to be learned and forgotten,

respectively.

28

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just

propositional logic, e.g:

• Software/Hardware verification needs reasoning about equality,

arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula

with respect to a background theory T

Example 1: T is Equality with Uninterpreted Functions (UIF):

f (g(a)) 6≈ f (c) ∨ g(a) ≈ d , g(a) ≈ c, c 6≈ d

Example 2: for combined theories:

A ≈ write(B, a+ 1, 4), read(A, b + 3) ≈ 2 ∨ f (a− 1) 6≈ f (b + 1)

29

SAT Modulo Theories (SMT)

The “very eager” approach to SMT

Method:

– translate problem into equisatisfiable propositional formula;

– use off-the-shelf SAT solver

• Why “eager”?

Search uses all theory information from the beginning

• Characteristics:

+ Can use best available SAT solver

− Sophisticated encodings are needed for each theory

− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure

- Efficient theory solvers for conjunctions of T -literals

30

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

31

