Decision Procedures in Verification

Combinations of Decision Procedures (2)
16.1.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Decidable subclasses of FOL
Decision procedures for single theories
Uninterpreted function symbols
Decision procedures for numeric domains
Combinations of theories
The Nelson-Oppen combination procedure.

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: $\mathcal{T}_{1}, \mathcal{T}_{2}$ first-order theories with signatures Σ_{1}, Σ_{2}
Assume that $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ (share only $\left.\approx\right)$
P_{i} decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_{i}
ϕ quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto \operatorname{DNF}(\phi)$
$\operatorname{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$:
where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ. not problematic; requires linear time

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable Complete: under additional assumptions

Implementation

ϕ conjunction of literals
Step 1. Purification: $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$, where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
How to implement Propagation?
Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i}$; make case split by adding some of these equalities to ϕ_{1}, ϕ_{2}. Repeat as long as possible.

Implementation of propagation

Last time: Guessing variant
Guess a maximal set of literals containing the shared variables V (arrangement: $\alpha(V, E)=\left(\bigwedge_{(u, v) \in E} u \approx v \wedge \bigwedge_{(u, v) \notin E} u \not \approx v\right)$, where E equivalence relation); check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.

On the blackboard: Example 10.5 and 10.7 pages 272, 273
Example 10.6 and 10.9 pages 272, 275
from the book "The Calculus of Computation" by A. Bradley and Z. Manna

Advantage: Whenever constraints are represented as Boolean combinations of atoms, one may combine heuristics of SMT solvers with specific features of the theories to be combined to produce the right arrangement efficiently.

Implementation of propagation

Backtracking variant

Identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i} ;$ make case split by adding some of these equalities to ϕ_{1}, ϕ_{2}.

Repeat as long as possible.
On the blackboard: Example 10.14, page 280-281, and Example 10.13, page 279, from the book "The Calculus of Computation" by A. Bradley and Z. Manna

Advantages:

- it works on the non-disjoint case as well
- can be made deterministic for combinations of convex theories
\mathcal{T} convex iff whenever $\mathcal{T} \models \bigwedge_{i=1}^{n} A_{i} \rightarrow \bigvee_{j=1}^{m} B_{j}$ there exists j s.t. $\mathcal{T} \models \bigwedge_{i=1}^{n} A_{i} \rightarrow B_{j}$

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified Soundness: If procedure answers "unsatisfiable" then ϕ is unsatisfiable

Proof: Assume that ϕ is satisfiable. Then $\phi_{1} \wedge \phi_{2}$ satisfiable.

- The procedure cannot answer "unsatisfiable" in Step 2.
- Let $(\mathcal{M}, \beta) \models \phi_{1} \wedge \phi_{2}$. Assume that $(\mathcal{M}, \beta) \models \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$

Then

$$
\begin{aligned}
& \left(\mathcal{M}_{\mid \Sigma_{1}}, \beta\right) \models \phi_{1} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \\
& \left(\mathcal{M}_{\mid \Sigma_{2}}, \beta\right) \models \phi_{2} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j}
\end{aligned}
$$

Guessing: $\bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$ "satisfiable arrangement".
Backtracking: Procedure answers satisfiable on the corresponding branch.

The Nelson-Oppen algorithm

Termination:	only finitely many shared variables to be identified
Soundness:	If procedure answers "unsatisfiable" then ϕ is unsatisfiable
Completeness:	Under additional hypotheses

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
g(c) \approx h(c) \quad k(c) \not \approx c
$$

satisfiable in E_{1}
satisfiable in E_{2}
no equations between shared variables; Nelson-Oppen answers "satisfiable"

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
\qquad g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"
A model of E_{1} satisfies $g(c) \approx h(c) \quad$ iff $\quad \exists e \in A$ s.t. $g(e)=h(e)$.
Then, for all $a \in A: \quad a=f_{A}(g(a), g(e))=f_{A}(g(a), h(e))=e$
$g(c) \approx h(c) \wedge k(c) \not \approx c \quad$ unsatisfiable

Completeness

Another example

\mathcal{T}_{1} theory admitting models of cardinality at most 2
\mathcal{T}_{2} theory admitting models of any cardinality

$$
\begin{aligned}
f_{1} \in \Sigma_{1}, f_{2} \in \Sigma_{2} \quad \text { such that } \mathcal{T}_{i} \not \models \forall x, y \quad f_{i}(x)=f_{i}(y) . \\
\phi=f_{1}\left(c_{1}\right) \not \not \nsim f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \not \nsim f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \not \not f_{2}\left(c_{3}\right) \\
\phi_{1}=f_{1}\left(c_{1}\right) \not \not \not f_{1}\left(c_{2}\right) \quad \phi_{2}=f_{2}\left(c_{1}\right) \not \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \not \not f_{2}\left(c_{3}\right)
\end{aligned}
$$

The Nelson-Oppen procedure returns "satisfiable"
$\mathcal{T}_{1} \cup \mathcal{T}_{2} \models \forall x, y, z\left(f_{1}(x) \not \approx f_{1}(y) \wedge f_{2}(x) \not \approx f_{2}(z) \wedge f_{2}(y) \not \approx f_{2}(z)\right.$ $\rightarrow(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z))$
$f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \not \approx f_{2}\left(c_{3}\right) \quad$ unsatisfiable

Completeness

Cause of incompleteness
There exist formulae satisfiable in finite models of bounded cardinality
Solution: Consider stably infinite theories.
\mathcal{T} is stably infinite iff for every quantifier-free formula ϕ
ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T}.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_{1}, ϕ_{2}
R equiv. relation assoc. with partition of $C \mapsto \operatorname{ar}(C, R)=\bigwedge_{R(c, d)} c \approx d \wedge \bigwedge_{\neg R(c, d)} c \not \approx d$
Lemma. Assume that there exists a partition of C s.t. $\phi_{i} \wedge \operatorname{ar}(C, R)$ is \mathcal{T}_{i}-satisfiable. Then $\phi_{1} \wedge \phi_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiable.

Idea of proof: Let $\mathcal{A}_{i} \in \operatorname{Mod}\left(\mathcal{T}_{i}\right)$ s.t. $\mathcal{A}_{i} \models \phi_{i} \wedge \operatorname{ar}(C, R)$. Then $c_{A_{1}}=d_{A_{1}}$ iff $c_{A_{2}}=d_{A_{2}}$.
Let $i:\left\{c_{A_{1}} \mid c \in C\right\} \rightarrow\left\{c_{A_{2}} \mid c \in C\right\}, i\left(c_{A_{1}}\right)=c_{A_{2}}$ well-defined; bijection.
Stable infinity: can assume w.l.o.g. that $\mathcal{A}_{1}, \mathcal{A}_{2}$ have the same cardinality
Let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ bijection s.t. $h\left(c_{A_{1}}\right)=c_{A_{2}}$
Use h to transfer the Σ_{1}-structure on \mathcal{A}_{2}.

Theorem. If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_{1}, \mathcal{T}_{2}$ to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
(a) decide whether there is a disjunction of equalities between variables
(b) investigate different branches corresponding to disjunctions

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free formula ϕ,
$\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some j.
\mapsto No branching

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free formula ϕ, $\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some j.
\mapsto No branching

Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in PTIME Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in PTIME

Complexity

In general: non-deterministic procedure
Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in NP Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in NP

Extensions of the Nelson-Oppen procedure

- relax the stable infiniteness requirement
- relax the requirement that the theories have disjoint signatures

Extensions of the Nelson-Oppen procedure

- relax the stable infiniteness requirement
[Tinelli,Zarba'03] One theory "shiny" (for each satisf. constraint we can compute a finite k s.t. the theory has models of every cardinality $\lambda \geq k$)
- relax the requirement that the theories have disjoint signatures
[Tinelli,Ringeissen'03] Theories sharing absolutely free constructors
[Ghilardi'04] Model theoretical conditions.

Main idea:

Find situations in which \mathcal{T}_{i} models of $\phi_{i}, i=1,2$ can be "amalgamated" to a $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ model of $\phi_{1} \wedge \phi_{2}$.

From conjunctions to arbitrary combinations

Until now:
check satisfiability for conjunctions of literals

Question:
how to check satisfiability of sets of clauses?

Overview

Satisfiability w.r.t. theories

- Propositional logic
- resolution
- DPLL
- First-order logic
- resolution
- Ground formulae
- conjunctions of literals:
specialized methods
- clauses: DPLL(T) \Leftarrow TODAY
- Formulae with quantifiers
- reduction to SAT for ground formulae instantiation \Leftarrow NEXT WEEK (situations when sound and complete) - resolution (mod T)

3.6 The $\operatorname{DPLL}(\mathcal{T})$ algorithm

Reminder: Propositional SAT

The DPLL algorithm

A succinct formulation

State: $M \| F$,
where:

- M partial assignment (sequence of literals), some literals are annotated (L^{d} : decision literal)
- F clause set.

A succinct formulation

UnitPropagation
$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and L undef. in M
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
Fail
$M \| F, C \Rightarrow$ Fail
Backjump
$M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F$
if L or $\neg L$ occurs in F, L undef. in M
if $M \models \neg C, M$ contains no decision literals

Example

Assignment:	Clause set:		
\emptyset	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (Decide)	
P_{1}	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (UnitProp)	
$P_{1} P_{2}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (Decide)	
$P_{1} P_{2} P_{3}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (UnitProp)	
$P_{1} P_{2} P_{3} P_{4}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \Rightarrow$ (Decide)		
$P_{1} P_{2} P_{3} P_{4} P_{5}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (UnitProp)	
$P_{1} P_{2} P_{3} P_{4} P_{5} \neg P_{6}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\Rightarrow (Backtrack)	
$P_{1} P_{2} P_{3} P_{4} \neg P_{5}$	$\\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$	\ldots	

DPLL with learning

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn

$M\|F \Rightarrow M\| F, C$ if all atoms of C occur in F and $F \models C$
Forget
$M\|F, C \Rightarrow M\| F$ if $F \models C$

In these two rules, the clause C is said to be learned and forgotten, respectively.

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

Example 1: \mathcal{T} is Equality with Uninterpreted Functions (UIF):

$$
f(g(a)) \not \approx f(c) \vee g(a) \approx d, \quad g(a) \approx c, \quad c \not \approx d
$$

Example 2: for combined theories:

$$
A \approx \operatorname{write}(B, a+1,4), \quad \operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \not \approx f(b+1)
$$

SAT Modulo Theories (SMT)

The "very eager" approach to SMT
Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory
- Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of \mathcal{T}-literals

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \underbrace{g(a) \approx c}_{P_{3}}, \underbrace{c \nsim d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[P_{1}, P_{2}, P_{3}, \neg P_{4}\right.$]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

