
Decision Procedures in Verification

Combinations of Decision Procedures (4)

30.1.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Decidable subclasses of FOL

Decision procedures for single theories

Uninterpreted function symbols

Decision procedures for numeric domains

Combinations of theories

The Nelson-Oppen combination procedure.

Beyond the conjunctive fragment DPLL(T)

Checking satisfiability of quantified formulae

2

Satisfiability of formulae with quantifiers

3

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae

containing (universally quantified) variables.

Examples

• check satisfiability of formulae in the Bernays-Schönfinkel class

• check whether a set of (universally quantified) Horn clauses

entails a ground clause

• check whether a property is consequence of a set of axioms

Example 1: f : Z → Z is monotonely increasing

and g : Z → Z is defined by g(x) = f (x + x)

then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and

x is inserted before the first position i with a[i] > x

then the array remains increasingly sorted.

4

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

• Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).

• Function symbols: read, write.

a(read) = Array × Index → Element

a(write) = Array × Index × Element → Array

5

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

6

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

7

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form

t ≤ u or t = u where t and u are either a variable or a ground term of

sort Index

Example: (x ≤ 3 ∨ x ≈ y) ∧ y ≤ z is an index guard

Example: x + 1 ≤ c, x + 3 ≤ y , x + x ≤ 2 are not index guards.

• Array property formula [Bradley,Manna,Sipma’06]

(∀i)(ϕI (i) → ϕV (i)), where:

ϕI : index guard

ϕV : formula in which any universally quantified i occurs in a direct

array read; no nestings

Example: c ≤ x ≤ y ≤ d → a(x) ≤ a(y) is an array property formula

Example: x < y → a(x) < a(y) is not an array property formula

8

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a′ (write)

Given a formula F containing an occurrence of a write term write(a, i , v),

we can substitute every occurrence of write(a, i , v) with a fresh variable a′

and explain the relationship between a′ and a.

9

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential

quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula

contains a negated array property.

10

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite

conjunction.

The main idea is to select a set of symbolic index terms on which to

instantiate all universal quantifiers.

11

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set I:

I = {λ}∪

{t | ·[t] ∈ F3 such that t is not a universally quantified variable}∪

{t | t occurs as an evar in the parsing of index guards}

(evar is any constant, ground term, or unquantified variable.)

This index set is the finite set of indices that need to be examined. It

includes all terms t that occur in some read(a, t) anywhere in F (unless it

is a universally quantified variable) and all terms t that are compared to a

universally quantified variable in some index guard.

λ is a fresh constant that represents all other index positions that are not

explicitly in I.

12

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal

quantification:

H[∀i .F [i] → G [i]]

H
[∧

i∈In (F [i] → G [i])
] (forall)

where n is the size of the list of quantified variables i .

This is the key step.

It replaces universal quantification with finite conjunction over the index

set. The notation i ∈ In means that the variables i range over all n-tuples

of terms in I.

13

Theories of arrays

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

The new conjuncts assert that the variable λ introduced in Step 4 is unique:

it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for

the quantifier free fragment.

14

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof

(Soundness) Step 1-6 preserve satisfiability

(Fi is a logical consequence of Fi−1).

15

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

Assume that F6 is satisfiabile. Clearly F5 has a model.

16

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

H[∀i .F [i] → G [i]]

H
[

∧

i∈In (F [i] → G [i])
] (forall)

Assume that F5 is satisfiabile. Let A = (Z, Elem, {aA}a∈Arrays , ...) be a

model for F5. Construct a model B for F4 as follows.

For x ∈ Z: l(x) (u(x)) closest left (right) neighbor of x in I.

aB(x) =

{

aA(l(x)) if x − l(x) ≤ u(x) − x or u(x) = ∞

aA(u(x)) if x − l(x) > u(x) − x or l(x) = −∞

17

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

If F3 has model then F2 has model

18

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a

′

(write)

Given a formula F containing an occurrence of a write term write(a, i , v), we can

substitute every occurrence of write(a, i , v) with a fresh variable a′ and explan the

relationship between a′ and a.

If F2 has a model then F1 has a model.

Step 1: Put F in NNF: NNF F1 is equivalent to F.

19

Theories of arrays

Theorem (Complexity) Suppose (Tindex ∪ Telem)-satisfiability is in NP.

For sub-fragments of the array property fragment in which formulae have

bounded-size blocks of quantifiers, Tarrays -satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating

a block of n universal quantifiers quantifying subformula G over index set I

produces |I | · n new subformulae, each of length polynomial in the length

of G . Hence, the output of Step 6 is of length only a polynomial factor

greater than the input to the procedure for fixed n.

20

Program verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

21

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

22

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

To prove: C2(a) ∧ Update(a, a′) → C2(a
′)

23

Another Situation

Insertion of an element c in a sorted array a of length n

for (i := 1; i ≤ n; i := i + 1) {
if a[i] ≥ c{n := n + 1

for (j := n; j > i ; j := j − 1){a[i] := a[i − 1]}
a[i] := c; return a

}} a[n + 1] := c; return a

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

24

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

Sorted(a, n) ∀i , j(1 ≤ i ≤ j ≤ n → a[i] ≤ a[j]) ∧

Update(a, n, a′, n′) ∀i((1 ≤ i ≤ n ∧ a[i] < c) → a′[i] = a[i]) ∧

∀i((c ≤ a(1) → a′[1] := c) ∧

∀i((a[n] < c → a′[n + 1] := c) ∧

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] < c ∧ a[i] ≥ c) → (a′[i] = c) ∧

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] ≥ c ∧ a[i] ≥ c → a′[i] := a[i − 1]) ∧

n′ := n + 1 ∧

¬Sorted(a′, n′) ∃k, l(1 ≤ k ≤ l ≤ n′ ∧ a[k] > a[l])

25

Beyond the array property fragment

Extension: New arrays defined by case distinction – Def(f ′)

∀x(φi (x) → f ′(x)=si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (1)

∀x(φi (x) → ti (x)≤f ′(x)≤si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (2)

where si , ti are terms over the signature Σ such that T0 |= ∀x(φi (x)→ti (x)≤si (x))

for all i ∈ I .

T0 ⊆ T0 ∧Def(f ′) has the property that for every set G of ground

clauses in which there are no nested applications of f ′:

T0 ∧ Def(f ′) ∧ G |=⊥ iff T0 ∧ Def(f ′)[G] ∧ G

(sufficient to use instances of axioms in Def(f ′) which are relevant for G)

• Some of the syntactic restrictions of the array property fragment can be

lifted

26

Pointer Structures

27

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Example: doubly-linked lists; ordered elements

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∀p (p 6= null ∧ p.next 6= null → p.info ≤ p.next.info)

28

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . (fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Theorem. K set of clauses in the fragment above. Then for every set G of

ground clauses, (K ∪ G) ∪ Ts |=⊥ iff K [G] ∪ Ts |=⊥

where K [G] is the set of instances of K in which the variables are replaced

by subterms in G .

29

Example: A theory of doubly-linked lists

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

30

Example: A theory of doubly-linked lists

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next 6=null→c.next.next.prev=c.next)

(d 6=null ∧ d.next 6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d .next.next.prev=d .next)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

31

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

32

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

33

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

34

Example: List insertion

Initially list is sorted: ∀p(p.next 6= null → p.prio ≥ p.next.prio)

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p) → next′(c)=p ∧ First′(c))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p) → next′(p)=next(p) ∧ ¬First′(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ ¬First(p) → next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null → next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null → next′(c)=null)

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))>x → next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(c)=next(p))

To check: Sorted(next, prio)∧Update(next, next′)∧ p0.next
′ 6=null∧p0.prio 6≥p0.next

′.prio |=⊥

We only need to use instances in which variables are

replaced by ground subterms occurring in the problem

35

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Sorted(next)

T0 T0 = (Lists, next)

36

Example: List insertion

To show:

T2 T2 = T1∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

Instantiate: T1∪ Update(next, next′)[G] ∪G |=⊥

Hierarchical reasoning:
︸ ︷︷ ︸

G ′

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

T0 T0 = (Lists, next)

37

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

⇓

T0 T0 = (Lists, next) T0 ∪ G ′′ |=⊥

38

More general concept

Local Theory Extensions

39

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

40

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Mon(f) ∀i , j(i < j → f (i) < f (j))

Problems:

• A prover for R ∪ Z does not know about f

• A prover for first-order logic may have problems with the reals and integers

• DPLL(T) cannot be used (Mon, Z,R: non-disjoint signatures)

• SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon(f)[G]
without loss of completeness

hierarchical/modular reasoning:
reduce to checking satisfiability of a set of constraints over R ∪ Z

41

Local theory extensions

Solution: Local theory extensions

K set of equational clauses; T0 theory; T1 = T0 ∪ K

(Loc) T0 ⊆ T1 is local, if for ground clauses G ,

T0 ∪K ∪ G |=⊥ iff T0 ∪K[G] ∪ G has no (partial) model

Various notions of locality, depending of the instances to be considered:

stable locality, order locality; extended locality.

42

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

∀i , j(i < j → f (i) < f (j))

43

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

Solution 1:

SMT (R ∪ Z ∪ UIF)

44

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Add congruence axioms. Replace pos-terms with new constants

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

a = b → f (a) = f (b)

Solution 2:

Hierarchical reasoning

45

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = b1 + 1

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

46

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = f (a)

a1 = b1 + 1 b1 = f (b)

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

47

Reasoning in local theory extensions

Locality: T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

Problem: Decide whether T0 ∪ K[G] ∪ G |=⊥

Solution 1: Use SMT (T0+UIF): possible only if K[G] ground

Solution 2: Hierarchic reasoning [VS’05]

reduce to satisfiability in T0: applicable in general

7→ parameterized complexity

48

Hierarchical reasoning

Theorem: Assume that T0 ⊆ T0 ∪ K is local. The following are equivalent:

(1) T0∪K∪G is satisfiable

(2) T0∪K[G]∪G has a (partial) model in which all terms in G are defined

(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where Con[G]0 is the set

of instances of the congruence axioms corresponding to D:

Con[G]0={

n∧

i=1

ci = di→c=d | f (c1, . . . , cn)=c, f (d1, . . . , dn)=d ∈ D}

(K0 ∪ G0 ∪ D be obtained from K[G]∪G by purification)

Consequence: Hierarchical reduction to a satisfiability test in T0

49

Hierarchical reasoning

Theorem: Assume that T0 ⊆ T0 ∪ K is local. The following are equivalent:

(1) T0∪K∪G is satisfiable

(2) T0∪K[G]∪G has a (partial) model in which all terms in G are defined

(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where Con[G]0 is the set

of instances of the congruence axioms corresponding to D:

Con[G]0={

n∧

i=1

ci = di→c=d | f (c1, . . . , cn)=c, f (d1, . . . , dn)=d ∈ D}

(K0 ∪ G0 ∪ D be obtained from K[G]∪G by purification)

Consequence: Hierarchical reduction to a satisfiability test in T0

R ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

G ∪ Mon(f)

a < b

f (a) = f (b) + 1

∀x(x ≤ y → f (x) ≤ f (y))

50

Hierarchical reasoning

Theorem: Assume that T0 ⊆ T0 ∪ K is local. The following are equivalent:

(1) T0∪K∪G is satisfiable

(2) T0∪K[G]∪G has a (partial) model in which all terms in G are defined

(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where Con[G]0 is the set

of instances of the congruence axioms corresponding to D:

Con[G]0={

n∧

i=1

ci = di→c=d | f (c1, . . . , cn)=c, f (d1, . . . , dn)=d ∈ D}

(K0 ∪ G0 ∪ D be obtained from K[G]∪G by purification)

Consequence: Hierarchical reduction to a satisfiability test in T0

R ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

G ∪ Mon(f)[G]

a < b

f (a) = f (b) + 1

a ≤ b → f (a) ≤ f (b)

b ≤ a → f (b) ≤ f (a)

51

Hierarchical reasoning

Theorem: Assume that T0 ⊆ T0 ∪ K is local. The following are equivalent:

(1) T0∪K∪G is satisfiable;

(2) T0∪K[G]∪G has a (partial) model in which all terms in G are defined.

(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where Con[G]0 is the set

of instances of the congruence axioms corresponding to D:

Con[G]0={

n∧

i=1

ci = di→c=d | f (c1, . . . , cn)=c, f (d1, . . . , dn)=d ∈ D}.

(K0 ∪ G0 ∪ D be obtained from K[G]∪G by purification.)

Consequence: Hierarchical reduction to a satisfiability test in T0.

R ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Definitions G0 ∪ Mon(f)[G]0 ∪ Con[G]0

a1 = f (a) a < b

b1 = f (b) a1 = b1 + 1

a ≤ b → a1 ≤ b1

b ≤ a → b1 ≤ a1

a = b → a1 = b1

52

Recognizing local theory extensions

Problem: Determine whether a theory extension is local

Solutions:

1. Semantic method: Embeddability of partial models into total models

T1 local extension of T0
// Emb(T0, T1)oo

2. Proof theoretical method: Test saturation under ordered resolution

[Basin,Ganzinger’96,’01] test locality; generate local presentation if poss.

53

Recognizing local theory extensions

Problem: Determine whether a theory extension is local

Our solutions:

1. Semantic method: Embeddability of partial models into total models

T1 local extension of T0
// Emb(T0, T1)oo

2. Proof theoretical method: Test saturation under ordered resolution

[Basin,Ganzinger’96,’01] test locality; generate local presentation if poss.

Results: • Extensions with new functions +
- definitions [VS’05,’06]

- (piecewise) boundedness/monotonicity [VS, Ihlemann’07]

- injectivity, strict monotonicity (add. asmpts.)[Jacobs,VS’07]
- Lipschitz conds./continuity/derivability [VS’08]

• Theories of data structures [Ihlemann,Jacobs,VS’08]

54

Examples of local theory extensions

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii)

the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras

with functions satisfying Monσ(f) is local.

Monσ(f)
∧

i∈I

xi≤i
σi yi ∧

∧

i 6∈I

xi=yi → f (x1, .., xn) ≤ f (y1, .., yn)

Theorem. The extension T0⊆T0∪SMon(f) is local if T0 is the theory of

reals (and f : R→R) or the disjoint combination of the theories of reals and

integers (and f : Z→R).

SMon(f) ∀i , j(i<j → f (i)<f (j))

55

Examples of local theory extensions

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii)

the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras

with functions satisfying Monσ(f) is local.

Monσ(f)
∧

i∈I

xi≤i
σi yi ∧

∧

i 6∈I

xi=yi → f (x1, .., xn) ≤ f (y1, .., yn).

Theorem. The extension T0⊆T0∪SMon(f) is local if T0 is the theory of

reals (and f : R→R) or the disjoint combination of the theories of reals and

integers (and f : Z→R).

SMon(f) ∀i , j(i<j → f (i)<f (j))

56

Examples of local theory extensions

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii)

the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras

with functions satisfying Monσ(f) is local.

Monσ(f)
∧

i∈I

xi≤i
σi yi ∧

∧

i 6∈I

xi=yi → f (x1, .., xn) ≤ f (y1, .., yn).

Theorem. The extension T0⊆T0∪SMon(f) is local if T0 is the theory of

reals (and f : R→R) or the disjoint combination of the theories of reals and

integers (and f : Z→R).

SMon(f) ∀i , j(i<j → f (i)<f (j))

57

Examples of local theory extensions

2. Boundedness

Theorem. T0 contains reflexive binary predicate ≤, and f 6∈ Σ0.

t1, ...tm, s1, ...sm: Σ0-terms; φ1, ...φm: Π0-formulae s.t.

(i) T0 |= ∀x(φi (x) → si (x) ≤ ti (x));

(ii) if i 6= j , φi ∧ φj |=T0
⊥.

GB(f)=






∀x(φ1(x) → s1(x)≤f (x)≤t1(x))
· · ·

∀x(φm(x) → sm(x)≤f (x)≤tm(x))

Def(f)=







∀x(φ1(x) → f (x)=t1(x))
· · ·

∀x(φm(x) → f (x)=tm(x))

The extensions T0 ⊆ T0 ∪ GB(f) and T0 ⊆ T0 ∪ Def(f) are both local.

58

Examples of local theory extensions

2. Boundedness for monotone functions

Theorem. Any extension of a theory for which ≤ is a partial order (or at

least reflexive) with functions satisfying Monσ(f) and Boundt(f) is local.

Boundt(f) ∀x1, . . . , xn(f (x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a Π0-term whose associated function has the same

monotonicity as f in any model.

Similar results hold for strictly monotone functions.

59

Applications

The notion of locality allows us to:

• uniformly explain existing results, e.g.

◦ Local pointer structures [McPeak, Necula 2005]

◦ Theory of arrays [Bradley,Manna,Sipma’06]

• generate / recognize in a systematic

way a class of local theory extensions related to data structures,

including proper extensions of the theories above.

e.g.:

• Updates of arrays, properties of arrays

• Insertion/Deletion in pointer structures

60

