Decision Procedures in Verification

Combinations of Decision Procedures (4)

30.1.2014

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Decidable subclasses of FOL

Decision procedures for single theories

Uninterpreted function symbols

Decision procedures for numeric domains

Combinations of theories

The Nelson-Oppen combination procedure.

Beyond the conjunctive fragment $DPLL(\mathcal{T})$

Checking satisfiability of quantified formulae

Satisfiability of formulae with quantifiers

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae containing (universally quantified) variables.

Examples

- check satisfiability of formulae in the Bernays-Schönfinkel class
- check whether a set of (universally quantified) Horn clauses entails a ground clause
- check whether a property is consequence of a set of axioms

Example 1: $f : \mathbb{Z} \to \mathbb{Z}$ is monotonely increasing and $g : \mathbb{Z} \to \mathbb{Z}$ is defined by g(x) = f(x + x)then g is also monotonely increasing

Example 2: If array *a* is increasingly sorted, and *x* is inserted before the first position *i* with a[i] > x then the array remains increasingly sorted.

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

- Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).
- Function symbols: read, write.

 $a(read) = Array \times Index \rightarrow Element$

 $a(write) = Array \times Index \times Element \rightarrow Array$

We consider the theory of arrays in a many-sorted setting.

Theory of arrays \mathcal{T}_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

$$read(write(a, i, e), i) \approx e$$

 $j \not\approx i \lor read(write(a, i, e), j) = read(a, j).$

We consider the theory of arrays in a many-sorted setting.

Theory of arrays \mathcal{T}_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

$$read(write(a, i, e), i) \approx e$$

 $j \not\approx i \lor read(write(a, i, e), j) = read(a, j).$

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

Index guard a positive Boolean combination of atoms of the form
 t ≤ u or t = u where t and u are either a variable or a ground term of sort Index

Example: $(x \le 3 \lor x \approx y) \land y \le z$ is an index guard Example: $x + 1 \le c$, $x + 3 \le y$, $x + x \le 2$ are not index guards.

• Array property formula [Bradley, Manna, Sipma'06]

 $(\forall i)(\varphi_I(i) \rightarrow \varphi_V(i))$, where:

 φ_I : index guard

 φ_V : formula in which any universally quantified *i* occurs in a direct array read; no nestings

Example: $c \le x \le y \le d \rightarrow a(x) \le a(y)$ is an array property formula Example: $x < y \rightarrow a(x) < a(y)$ is not an array property formula

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

$$\frac{F[\textit{write}(a, i, v)]}{F[a'] \land a'[i] = v \land (\forall j.j \neq i \rightarrow a[j] = a'[j])} \quad \text{for fresh } a' \text{ (write)}$$

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write(a, i, v) with a fresh variable a'and explain the relationship between a' and a.

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists i.G[i]]}{F[G[j]]}$$
 for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula contains a negated array property.

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.

The main idea is to select a set of symbolic index terms on which to instantiate all universal quantifiers.

Step 4 From the output F3 of Step 3, construct the index set \mathcal{I} :

 $\mathcal{I} = \{\lambda\} \cup \\ \{t \mid \cdot[t] \in F3 \text{ such that } t \text{ is not a universally quantified variable}\} \cup \\ \{t \mid t \text{ occurs as an } evar \text{ in the parsing of index guards}\}$

(evar is any constant, ground term, or unquantified variable.)

This index set is the finite set of indices that need to be examined. It includes all terms t that occur in some read(a, t) anywhere in F (unless it is a universally quantified variable) and all terms t that are compared to a universally quantified variable in some index guard.

 λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I} .

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{i}.F[i] \to G[i]]}{H\left[\bigwedge_{\overline{i}\in\mathcal{I}^n}(F[\overline{i}] \to G[\overline{i}])\right]} \quad \text{(forall)}$$

where *n* is the size of the list of quantified variables \overline{i} .

This is the key step.

It replaces universal quantification with finite conjunction over the index set. The notation $\overline{i} \in \mathcal{I}^n$ means that the variables \overline{i} range over all *n*-tuples of terms in \mathcal{I} .

Step 6: From the output *F*5 of Step 5, construct

$$F6: \qquad F5 \land \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$$

The new conjuncts assert that the variable λ introduced in Step 4 is unique: it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of *F*6 using the decision procedure for the quantifier free fragment.

Consider a formula F from the array property fragment . The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Soundness) Step 1-6 preserve satisfiability (Fi is a logical consequence of Fi-1).

Consider a formula F from the array property fragment . The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 6: From the output *F*5 of Step 5, construct

$$F6: \quad F5 \land \bigwedge_{i \in \mathcal{I} \setminus \{\lambda\}} \lambda \neq i$$

Assume that F6 is satisfiabile. Clearly F5 has a model.

Consider a formula F from the array property fragment . The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$\frac{H[\forall \overline{i}.F[i] \to G[i]]}{H\left[\bigwedge_{\overline{i} \in \mathcal{I}^n} (F[\overline{i}] \to G[\overline{i}])\right]} \quad \text{(forall)}$$

Assume that F5 is satisfiabile. Let $\mathcal{A} = (\mathbb{Z}, \text{Elem}, \{a_A\}_{a \in Arrays}, ...)$ be a model for F5. Construct a model \mathcal{B} for F4 as follows.

For $x \in \mathbb{Z}$: I(x) (u(x)) closest left (right) neighbor of x in \mathcal{I} .

$$a_{\mathcal{B}}(x) = \begin{cases} a_{\mathcal{A}}(l(x)) & \text{if } x - l(x) \le u(x) - x \text{ or } u(x) = \infty \\ a_{\mathcal{A}}(u(x)) & \text{if } x - l(x) > u(x) - x \text{ or } l(x) = -\infty \end{cases}$$

Consider a formula F from the array property fragment . The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$\frac{F[\exists i.G[i]]}{F[G[j]]}$$
 for fresh *j* (exists)

If F3 has model then F2 has model

Consider a formula F from the array property fragment . The output F6 of Step 6 is T_{arrays} -equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

$$\frac{F[write(a, i, v)]}{F[a'] \land a'[i] = v \land (\forall j.j \neq i \rightarrow a[j] = a'[j])} \quad \text{for fresh } a' \text{ (write)}$$

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write(a, i, v) with a fresh variable a' and explan the relationship between a' and a.

If F2 has a model then F1 has a model.

Step 1: Put F in NNF: NNF F1 is equivalent to F.

Theorem (Complexity) Suppose $(T_{index} \cup T_{elem})$ -satisfiability is in NP. For sub-fragments of the array property fragment in which formulae have bounded-size blocks of quantifiers, T_{arrays} -satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating a block of n universal quantifiers quantifying subformula G over index set Iproduces $|I| \cdot n$ new subformulae, each of length polynomial in the length of G. Hence, the output of Step 6 is of length only a polynomial factor greater than the input to the procedure for fixed n.

Program verification

Program Verification

 $-1 \leq i < |a| \wedge$ partitioned(a, 0, i, i + 1, $|a| - 1) \wedge$ sorted(a, i, |a| - 1)

 $\begin{aligned} -1 &\leq i < |a| \land 0 \leq j \leq i \land \\ \text{partitioned}(a, 0, i, i + 1, |a| - 1) \land \\ \text{sorted}(a, i, |a| - 1) \\ \text{partitioned}(a, 0, j - 1, j, j) \quad C_2 \end{aligned}$

Example: Does BUBBLESORT return
a sorted array?
int [] BUBBLESORT(int[] a) {
int
$$i, j, t;$$

for $(i := |a| - 1; i > 0; i := i - 1)$ {
for $(j := 0; j < i; j := j + 1)$ {
if $(a[j] > a[j + 1])$ { $t := a[j];$
 $a[j] := a[j + 1];$
 $a[j + 1] := t$ };
}} return a}

Generate verification conditions and prove that they are valid Predicates:

- sorted(a, l, u): $\forall i, j(l \le i \le j \le u \rightarrow a[i] \le a[j])$
- partitioned(a, l_1 , u_1 , l_2 , u_2): $\forall i, j(l_1 \leq i \leq u_1 \leq l_2 \leq j \leq u_2 \rightarrow a[i] \leq a[j])$

Program Verification

 $-1 \leq i < |a| \land$ partitioned(a, 0, i, i + 1, $|a| - 1) \land$ sorted(a, i, |a| - 1)

 $\begin{aligned} -1 &\leq i < |a| \land 0 \leq j \leq i \land \\ \text{partitioned}(a, 0, i, i + 1, |a| - 1) \land \\ \text{sorted}(a, i, |a| - 1) \\ \text{partitioned}(a, 0, j - 1, j, j) \quad \textbf{C}_2 \end{aligned}$

a sorted array?
int [] BUBBLESORT(int[] a) {
int
$$i, j, t$$
;
for $(i := |a| - 1; i > 0; i := i - 1)$ {
for $(j := 0; j < i; j := j + 1)$ {
if $(a[j] > a[j + 1])$ { $t := a[j]$;
 $a[j] := a[j + 1];$
 $a[j + 1] := t$ };
}} return a}

Example: Does BUBBLESORT return

Generate verification conditions and prove that they are valid **Predicates**:

- sorted(a, l, u): $\forall i, j(l \le i \le j \le u \rightarrow a[i] \le a[j])$
- partitioned(a, l_1 , u_1 , l_2 , u_2): $\forall i, j(l_1 \leq i \leq u_1 \leq l_2 \leq j \leq u_2 \rightarrow a[i] \leq a[j])$

To prove: $C_2(a) \land \mathsf{Update}(a, a') \rightarrow C_2(a')$

Another Situation

Insertion of an element c in a sorted array a of length n

for
$$(i := 1; i \le n; i := i + 1)$$
 {
if $a[i] \ge c\{n := n + 1$
for $(j := n; j > i; j := j - 1)\{a[i] := a[i - 1]\}$
 $a[i] := c$; return a
}} $a[n + 1] := c$; return a

Task:

If the array was sorted before insertion it is sorted also after insertion.

 $Sorted(a, n) \land Update(a, n, a', n') \land \neg Sorted(a', n') \models_{\mathcal{T}} \bot?$

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.

 $Sorted(a, n) \land Update(a, n, a', n') \land \neg Sorted(a', n') \models_{\mathcal{T}} \bot?$

Sorted(a, n)

$$\forall i, j(1 \le i \le j \le n \rightarrow a[i] \le a[j])$$

$$\forall pdate(a, n, a', n') \quad \forall i((1 \le i \le n \land a[i] < c) \rightarrow a'[i] = a[i])$$

$$\forall i((c \le a(1) \rightarrow a'[1] := c)$$

$$\forall i((a[n] < c \rightarrow a'[n+1] := c)$$

$$\forall i((1 \le i - 1 \le i \le n \land a[i - 1] < c \land a[i] \ge c) \rightarrow (a'[i] = c)$$

$$\forall i((1 \le i - 1 \le i \le n \land a[i - 1] \ge c \land a[i] \ge c \rightarrow a'[i] := a[i - 1])$$

$$n' := n + 1$$

$$\neg \text{Sorted}(a', n') \qquad \exists k, l(1 \le k \le l \le n' \land a[k] > a[l])$$

Extension: New arrays defined by case distinction - Def(f')

 $\forall \overline{x}(\phi_i(\overline{x}) \to f'(\overline{x}) = s_i(\overline{x})) \qquad i \in I, \text{ where } \phi_i(\overline{x}) \land \phi_j(\overline{x}) \models_{\mathcal{T}_0} \bot \text{ for } i \neq j(1)$ $\forall \overline{x}(\phi_i(\overline{x}) \to t_i(\overline{x}) \leq f'(\overline{x}) \leq s_i(\overline{x})) \qquad i \in I, \text{ where } \phi_i(\overline{x}) \land \phi_j(\overline{x}) \models_{\mathcal{T}_0} \bot \text{ for } i \neq j(2)$

where s_i , t_i are terms over the signature Σ such that $\mathcal{T}_0 \models \forall \overline{x}(\phi_i(\overline{x}) \rightarrow t_i(\overline{x}) \leq s_i(\overline{x}))$ for all $i \in I$.

 $\mathcal{T}_0 \subseteq \mathcal{T}_0 \land \mathsf{Def}(f')$ has the property that for every set G of ground clauses in which there are no nested applications of f':

 $\mathcal{T}_0 \wedge \mathrm{Def}(f') \wedge G \models \perp \quad \mathrm{iff} \quad \mathcal{T}_0 \wedge \mathrm{Def}(f')[G] \wedge G$

(sufficient to use instances of axioms in Def(f') which are relevant for G)

• Some of the syntactic restrictions of the array property fragment can be lifted

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \ \mathcal{E} \lor \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_1(f_2(...f_n(p)))$ occurs in axiom, the axiom also contains: p=null $\lor f_n(p)=$ null $\lor \cdots \lor f_2(...f_n(p)))=$ null

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \ \mathcal{E} \lor \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_1(f_2(...(f_n(p)))$ occurs in axiom, the axiom also contains: p=null $\lor f_n(p)=$ null $\lor \cdots \lor f_2(...f_n(p)))=$ null

Theorem. K set of clauses in the fragment above. Then for every set G of ground clauses, $(K \cup G) \cup \mathcal{T}_s \models \perp$ iff $K^{[G]} \cup \mathcal{T}_s \models \perp$

where $K^{[G]}$ is the set of instances of K in which the variables are replaced by subterms in G.

Example: A theory of doubly-linked lists

- $\forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{next.prev} = p)$ $\forall p \ (p \neq \text{null} \land p.\text{prev} \neq \text{null} \rightarrow p.\text{prev.next} = p)$
- $\land c \neq \mathsf{null} \land c.\mathsf{next} \neq \mathsf{null} \land d \neq \mathsf{null} \land d.\mathsf{next} \neq \mathsf{null} \land c.\mathsf{next} = d.\mathsf{next} \land c \neq d \models \bot$

Example: A theory of doubly-linked lists

 $(c \neq \mathsf{null} \land c.\mathsf{next} \neq \mathsf{null} \rightarrow c.\mathsf{next}.\mathsf{prev} = c) \quad (c.\mathsf{next} \neq \mathsf{null} \land c.\mathsf{next}.\mathsf{next} \neq \mathsf{null} \rightarrow c.\mathsf{next}.\mathsf{next}.\mathsf{prev} = c.\mathsf{next}) \\ (d \neq \mathsf{null} \land d.\mathsf{next} \neq \mathsf{null} \rightarrow d.\mathsf{next}.\mathsf{prev} = d) \quad (d.\mathsf{next} \neq \mathsf{null} \land d.\mathsf{next}.\mathsf{next}.\mathsf{next}.\mathsf{next}.\mathsf{prev} = d.\mathsf{next})$

 $\land c \neq \mathsf{null} \land c.\mathsf{next} \neq \mathsf{null} \land d \neq \mathsf{null} \land d.\mathsf{next} \neq \mathsf{null} \land c.\mathsf{next} = d.\mathsf{next} \land c \neq d \models \bot$

Initially list is sorted: p.next \neq null \rightarrow p.prio \geq p.next.prio

c.prio = x, c.next = nullfor all $p \neq c$ do if $p.prio \leq x$ then if First(p) then c.next' = p, First'(c), $\neg First'(p)$ endif; p.next' = p.next p.prio > x then case p.next = null then p.next' := c, c.next' = null $p.next \neq null \land p.next.prio > x$ then p.next' = p.next $p.next \neq null \land p.next.prio \leq x$ then p.next' = c, c.next' = p.next

Verification task: After insertion list remains sorted

Initially list is sorted: p.next \neq null \rightarrow p.prio \geq p.next.prio

c.prio = x, c.next = nullfor all $p \neq c$ do if $p.prio \leq x$ then if First(p) then c.next' = p, First'(c), $\neg First'(p)$ endif; p.next' = p.next p.prio > x then case p.next = null then p.next' := c, c.next' = null $p.next \neq null \land p.next.prio > x$ then p.next' = p.next $p.next \neq null \land p.next.prio \leq x$ then p.next' = c, c.next' = p.next

Verification task: After insertion list remains sorted

Initially list is sorted: p.next \neq null \rightarrow p.prio \geq p.next.prio

c.prio = x, c.next = nullfor all $p \neq c$ do if $p.prio \leq x$ then if First(p) then c.next' = p, First'(c), $\neg First'(p)$ endif; p.next' = p.next p.prio > x then case p.next = null then p.next' := c, c.next' = null $p.next \neq null \land p.next.prio > x$ then p.next' = p.next $p.next \neq null \land p.next.prio \leq x$ then p.next' = c, c.next' = p.next

Verification task: After insertion list remains sorted

Initially list is sorted: $\forall p(p.\text{next} \neq \text{null} \rightarrow p.\text{prio} \geq p.\text{next.prio})$

 $\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \text{First}(p) \rightarrow \text{next}'(c) = p \land \text{First}'(c)) \\ \forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \text{First}(p) \rightarrow \text{next}'(p) = \text{next}(p) \land \neg \text{First}'(p))$

 $\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) \leq x \land \neg \text{First}(p) \rightarrow \text{next}'(p) = \text{next}(p))$

 $\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) = \text{null} \rightarrow \text{next}'(p) = c$ $\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) = \text{null} \rightarrow \text{next}'(c) = \text{null})$

 $\forall p(p \neq \text{null} \land p \neq c \land \text{prio}(p) > x \land \text{next}(p) \neq \text{null} \land \text{prio}(\text{next}(p)) > x \rightarrow \text{next}'(p) = \text{next}(p))$

$\forall p (p \neq null \land p$	We only need to use instances in which variables are	(p)=c
$\forall p (p \neq \text{null} \land p)$	replaced by ground subterms occurring in the problem	(c) = next(p))

To check: Sorted(next, prio) \land Update(next, next') \land p_0 .next' \neq null \land p_0 .prio $\not\geq$ p_0 .next'.prio \models \perp

More general concept

Local Theory Extensions

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \bot$$

$$\mathsf{Mon}(f) \qquad \forall i, j(i < j \to f(i) < f(j))$$

Problems:

- A prover for $\mathbb{R} \cup \mathbb{Z}$ does not know about f
- A prover for first-order logic may have problems with the reals and integers
- DPLL(T) cannot be used (Mon, \mathbb{Z} , \mathbb{R} : non-disjoint signatures)
- SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon(f)[G]without loss of completeness hierarchical/modular reasoning: reduce to checking satisfiability of a set of constraints over $\mathbb{R} \cup \mathbb{Z}$ **Solution:** Local theory extensions

 \mathcal{K} set of equational clauses; \mathcal{T}_0 theory; $\mathcal{T}_1 = \mathcal{T}_0 \cup \mathcal{K}$

(Loc) $\mathcal{T}_0 \subseteq \mathcal{T}_1$ is local, if for ground clauses G, $\mathcal{T}_0 \cup \mathcal{K} \cup G \models \perp \text{ iff } \mathcal{T}_0 \cup \mathcal{K}[G] \cup G \text{ has no (partial) model}$

Various notions of locality, depending of the instances to be considered: stable locality, order locality; extended locality.

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \bot$$

Base theory $(\mathbb{R}\cup\mathbb{Z})$	Extension
a < b	f(a) = f(b) + 1
	$\forall i, j (i < j \rightarrow f(i) < f(j))$

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \perp$$

Extension is local \mapsto replace axiom with ground instances

Base theory $(\mathbb{R}\cup\mathbb{Z})$	Extension	
a < b	$egin{aligned} f(a) &= f(b) + 1 \ a &< b ightarrow f(a) &< f(b) \ b &< a ightarrow f(b) &< f(a) \end{aligned}$	Solution 1: $SMT(\mathbb{R} \cup \mathbb{Z} \cup UIF)$

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \bot$$

Extension is local \mapsto replace axiom with ground instances

Add congruence axioms. Replace pos-terms with new constants

Base theory $(\mathbb{R}\cup\mathbb{Z})$	Extension		
a < b	$egin{aligned} f(a) &= f(b) + 1 \ a &< b ightarrow f(a) &< f(b) \ b &< a ightarrow f(b) &< f(a) \ a &= b ightarrow f(a) = f(b) \end{aligned}$	Solution 2: Hierarchical reasoning	

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \bot$$

Extension is local \mapsto replace axiom with ground instances

Replace *f*-terms with new constants

Add definitions for the new constants

Base theory $(\mathbb{R}\cup\mathbb{Z})$	Extension	
a < b	$a_1 = b_1 + 1$	
	$a < b o a_1 < b_1$	
	$b < a ightarrow rac{b_1}{b_1} < a_1$	
	$a=b ightarrow a_1=b_1$	

$$\mathbb{R} \cup \mathbb{Z} \cup \mathsf{Mon}(f) \cup \underbrace{(a < b \land f(a) = f(b) + 1)}_{G} \models \bot$$

Extension is local \mapsto replace axiom with ground instances

Replace *f*-terms with new constants

Add definitions for the new constants

Base theory $(\mathbb{R}\cup\mathbb{Z})$	Extension
a < b	$a_1 = f(a)$
$a_1=b_1+1$	$b_1 = f(b)$
$a < b \to a_1 < b_1$	
$b < a ightarrow b_1 < a_1$	
${\sf a}={\sf b} o {\sf a}_1={\sf b}_1$	

Locality: $\mathcal{T}_0 \cup \mathcal{K} \cup G \models \perp$ iff $\mathcal{T}_0 \cup \mathcal{K}[G] \cup G \models \perp$

Problem: Decide whether $\mathcal{T}_0 \cup \mathcal{K}[G] \cup G \models \perp$

Solution 1: Use $SMT(\mathcal{T}_0+UIF)$: possible only if $\mathcal{K}[G]$ ground

Solution 2: Hierarchic reasoning [VS'05] reduce to satisfiability in \mathcal{T}_0 : applicable in general \mapsto parameterized complexity **Theorem:** Assume that $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup \mathcal{K}$ is local. The following are equivalent:

- (1) $\mathcal{T}_0 \cup \mathcal{K} \cup G$ is satisfiable
- (2) $\mathcal{T}_0 \cup \mathcal{K}[G] \cup G$ has a (partial) model in which all terms in G are defined
- (3) $\mathcal{T}_0 \cup \mathcal{K}_0 \cup G_0 \cup \text{Con}[G]_0$ has a (total) model, where $\text{Con}[G]_0$ is the set of instances of the congruence axioms corresponding to D:

 $\operatorname{Con}[G]_0 = \{\bigwedge_{i=1}^n c_i = d_i \rightarrow c = d \mid f(c_1, \ldots, c_n) = c, f(d_1, \ldots, d_n) = d \in D\}$

 $(\mathcal{K}_0 \cup G_0 \cup D \text{ be obtained from } \mathcal{K}[G] \cup G \text{ by purification})$

Consequence: Hierarchical reduction to a satisfiability test in \mathcal{T}_0

Consequence: Hierarchical reduction to a satisfiability test in \mathcal{T}_0

Consequence: Hierarchical reduction to a satisfiability test in \mathcal{T}_0

Consequence: Hierarchical reduction to a satisfiability test in \mathcal{T}_0 .

Recognizing local theory extensions

Problem: Determine whether a theory extension is local

Solutions:

1. Semantic method: Embeddability of partial models into total models

$$\mathcal{T}_1$$
 local extension of $\mathcal{T}_0 \rightleftharpoons \mathsf{Emb}(\mathcal{T}_0, \mathcal{T}_1)$

2. Proof theoretical method: Test saturation under ordered resolution [Basin,Ganzinger'96,'01] test locality; generate local presentation if poss.

Recognizing local theory extensions

Problem: Determine whether a theory extension is local

Our solutions:

1. Semantic method: Embeddability of partial models into total models

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii) the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras with functions satisfying $Mon^{\sigma}(f)$ is local.

$$\mathsf{Mon}^{\sigma}(f) \quad \bigwedge_{i \in I} x_i \leq_i^{\sigma_i} y_i \land \bigwedge_{i \notin I} x_i = y_i \to f(x_1, ..., x_n) \leq f(y_1, ..., y_n)$$

Theorem. The extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup SMon(f)$ is local if \mathcal{T}_0 is the theory of reals (and $f : \mathbb{R} \rightarrow \mathbb{R}$) or the disjoint combination of the theories of reals and integers (and $f : \mathbb{Z} \rightarrow \mathbb{R}$).

 $SMon(f) \quad \forall i, j(i < j \rightarrow f(i) < f(j))$

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii) the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras with functions satisfying $Mon^{\sigma}(f)$ is local.

$$\mathsf{Mon}^{\sigma}(f) \quad \bigwedge_{i \in I} x_i \leq i^{\sigma_i} y_i \land \bigwedge_{i \notin I} x_i = y_i \to f(x_1, ..., x_n) \leq f$$

Theorem. The extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup SMon(f)$ is local reals (and $f : \mathbb{R} \rightarrow \mathbb{R}$) or the disjoint combination of th integers (and $f : \mathbb{Z} \rightarrow \mathbb{R}$).

 $SMon(f) \quad \forall i, j(i < j \rightarrow f(i) < f(j))$

1. Monotonicity conditions

Theorem Any extension of the (i) theory of reals, rationals or integers or (ii) the theory of Posets, (semi)lattices, distributive lattices, Boolean algebras with functions satisfying $Mon^{\sigma}(f)$ is local.

$$\mathsf{Mon}^{\sigma}(f) \quad \bigwedge_{i \in I} x_i \leq_i {}^{\sigma_i} y_i \land \bigwedge_{i \notin I} x_i = y_i \to f(x_1, ..., x_n) \leq f$$

Theorem. The extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup SMon(f)$ is local reals (and $f : \mathbb{R} \rightarrow \mathbb{R}$) or the disjoint combination of th integers (and $f : \mathbb{Z} \rightarrow \mathbb{R}$).

 $SMon(f) \quad \forall i, j(i < j \rightarrow f(i) < f(j))$

2. Boundedness

Theorem. \mathcal{T}_0 contains reflexive binary predicate \leq , and $f \notin \Sigma_0$. $t_1, \ldots t_m, s_1, \ldots s_m$: Σ_0 -terms; $\phi_1, \ldots \phi_m$: Π_0 -formulae s.t. (i) $\mathcal{T}_0 \models \forall \overline{x}(\phi_i(\overline{x}) \to s_i(\overline{x}) \leq t_i(\overline{x}));$ (ii) if $i \neq j$, $\phi_i \wedge \phi_i \models_{\mathcal{T}_0} \bot$. $GB(f) = \begin{cases} \forall \overline{x}(\phi_1(\overline{x}) \to s_1(\overline{x}) \le f(\overline{x}) \le t_1(\overline{x})) \\ \dots \\ \forall \overline{x}(\phi_m(\overline{x}) \to s_m(\overline{x}) \le f(\overline{x}) \le t_m(\overline{x})) \end{cases}$ $Def(f) = \begin{cases} \forall \overline{x}(\phi_1(\overline{x}) \to f(\overline{x}) = t_1(\overline{x})) \\ \dots \\ \forall \overline{x}(\phi_m(\overline{x}) \to f(\overline{x}) = t_m(\overline{x})) \end{cases}$ The extensions $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup \mathsf{GB}(f)$ and $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup \mathsf{Def}(f)$ are both local.

2. Boundedness for monotone functions

Theorem. Any extension of a theory for which \leq is a partial order (or at least reflexive) with functions satisfying $Mon^{\sigma}(f)$ and $Bound^{t}(f)$ is local. Bound^t(f) $\forall x_1, \ldots, x_n(f(x_1, \ldots, x_n) \leq t(x_1, \ldots, x_n))$ where $t(x_1, \ldots, x_n)$ is a Π_0 -term whose associated function has the same

monotonicity as f in any model.

Similar results hold for strictly monotone functions.

Applications

The notion of locality allows us to:

- uniformly explain existing results, e.g.
 - Local pointer structures [McPeak, Necula 2005]
 - Theory of arrays [Bradley, Manna, Sipma'06]
- generate / recognize in a systematic
 way a class of local theory extensions related to data structures, including proper extensions of the theories above.

e.g.:

- Updates of arrays, properties of arrays
- Insertion/Deletion in pointer structures