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Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution (Soundness, refutational completeness, refinements)

Consequences: Compactness of FOL; The Löwenheim-Skolem Theorem; Craig

interpolation

Decidable subclasses of FOL

The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses)

The Ackermann class

The monadic class
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The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely

relational signatures Σ = (Ω,Π), where Ω = ∅, and every p ∈ Π has arity 1.

Abstract syntax:

Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | ∀xΦ

– All predicates unary

– No functions

– No restrictions on the formulae or on the quantifier prefix
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The Monadic Class

MFO Abstract syntax: Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | ∀xΦ

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO

formula with k predicate symbols then Φ has a model where the domain is

a subset of {0, 1}k .

Idea. Let Φ be a MFO formula with k predicate symbols.

Let A = (UA, {pA}p∈Π) be a Σ-algebra. The only way to distinguish the elements

of UA is by the atomic formulae p(x), p ∈ Π.

• the elements which a ∈ UA which belong to the same pA’s, p ∈ Π can be

collapsed into one single element.

• if Π = {p1, . . . , pk} then what remains is a finite structure with at most 2k

elements.

• the truth value of a formula: computed by evaluating all subformulae.
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The Monadic Class

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO

formula with k predicate symbols then Φ has a model where the domain is

a subset of {0, 1}k .

Proof: Let B = ({0, 1}k , {p1
B, . . . , pk

B}), where pi
B={(b1, . . . , bk ) | bi=1}.

Let A = (UA, {p1
A, . . . , pk

A}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk ) where bi = 1 if a ∈ p
i
A and 0 otherwise.

Then a ∈ pi
A iff h(a) ∈ pi

B for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B ∩ h(UA), . . . , pk

B ∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ. Structural induction
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The Monadic Class

To show:

(A(β)(Φ) = B′(β ◦ h)(Φ).

Induction on the structure of Φ

Induction base: Show that claim is true for all atomic formulae

• Φ = ⊤ OK

• Φ = pi (x).

Then the following are equivalent:

(1) (A, β) |= Φ

(2) β(x) ∈ pi
A (definition)

(3) h(β(x)) ∈ pi
B (definition of h and of pi

B)

(4) (B′, β ◦ h) |= Φ (definition)
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The Monadic Class

Induction on the structure of Φ

Let Φ be a formula which is not atomic.

Assume statement holds for the (direct) subformulae of Φ. Prove that it holds for Φ.

• Φ = Φ1 ∧ Φ2

Assume (A,β) |= Φ. Then (A, β) |= Φi , i = 1, 2.

By induction hypothesis, (B′, β ◦ h) |= Φi , i = 1, 2.

Thus, (B′, β ◦ h) |= Φ = Φ1 ∧ Φ2

The converse can be proved similarly.

• Φ = ¬Φ1

The following are equivalent:

(1) (A, β) |= Φ = ¬Φ1.

(2) A(β)(Φ1) = 0

(3) B′(β ◦ h)(Φ1) = 0 (induction hypothesis)

(4) (B′, β ◦ h) |= Φ = ¬Φ1
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The Monadic Class

• Φ = ∀xΦ1(x).

Then the following are equivalent:

(1) (A, β)|=Φ

(2) A(β[x 7→ a])(Φ1) = 1 for all a ∈ UA

(3) B′(β[x 7→ a] ◦ h)(Φ1) = 1 for all a∈UA (ind. hyp)

(4) B′(β ◦ h[x 7→ b])(Φ1) = 1 for all b∈{0, 1}k ∩ h(A)

(5) (B′, β◦h)|=Φ
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The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several

other classes):

William H. Joyner Jr.

Resolution Strategies as Decision Procedures.

J. ACM 23(3): 398-417 (1976)

Idea:

• Use orderings to restrict the possible inferences

• Identify a class of clauses (with terms of bounded depth) which

contains the type of clauses generated from the respective fragment

and is closed under ordered resolution (+ red. elim. criteria)

• Show that a saturation of the clauses can be obtained in finite time
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The Monadic Class

Resolution-based decision procedure for the Monadic Class:

Φ : ∀x1∃y1 . . . ∀xk∃yk (....p
s(xi )......p

l (yi )...)

7→ ∀x1 . . . ∀xk (...p
s(xi )...p

l (fsk(x1, . . . , x i )...)

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears

- each variable-disjoint partition has at most n =
∑

i=1 |x i |

variables (can order the variables as x1, . . . , xn)

- the variables of each non-ground block can occur either in

atoms p(xi ) or in atoms P(fsk(x1, . . . , xt)), 0 ≤ t ≤ n

It can be shown that this class contains all CNF’s of formulae in the

monadic class and is closed under ordered resolution.
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3.2 Deduction problems

Satisfiability w.r.t. a theory
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?
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Satisfiability w.r.t. a theory

Example

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Question: Is ∀x , y(x ∗ y = y ∗ x) entailed by F?

Alternative question:

Is ∀x , y(x ∗ y = y ∗ x) true in the class of all groups?
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Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory of M: Th(M) = {G ∈ FΣ(X ) closed | M |= G}
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Decidable theories

Let Σ = (Ω,Π) be a signature.

M: class of Σ-algebras. T = Th(M) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (after a finite number of steps) whether φ is in T or not.

F : class of (closed) first-order formulae.

The theory T = Th(Mod(F)) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (in finite time) whether F |= φ or not.
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Examples

Undecidable theories

•Th((Z, {0, 1,+, ∗}, {≤}))

•Th(Σ-alg)
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Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {≈,≤})

(does not capture true arithmetic by Goedel’s incompleteness theorem)
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• Th(Z+) Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]
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Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments
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Problems

T : first-order theory in signature Σ; L class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={∀xA(x) | A atomic} word problem

L={∀x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th∀Horn

L={∀xC(x) | C(x) clause} clausal validity problem Th∀,cl

L={∀xφ(x) | φ(x) unquantified} universal validity problem Th∀

L={∃xA1∧ . . .∧An | Ai atomic} unification problem Th∃

L={∀x∃xA1∧ . . .∧An | Ai atomic} unification with constants Th∀∃
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T -validity vs. T -satisfiability

T -validity: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Remark: T |= φ iff T ∪ ¬φ unsatisfiable

Every T -validity problem has a dual T -satisfiability problem:

T -satisfiability: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

¬L = {¬φ | φ ∈ L}

Given ψ in ¬L, is it the case that T ∪ ψ is satisfiable?
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem
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T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′
i
| L′

i
literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability

of conjunctions of ground literals
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T -validity vs. T -satisfiability

T |= ∀xA(x) iff T ∪ ∃x¬A(x) unsatisfiable

T |= ∀x(A1 ∧ · · · ∧ An → B) iff T ∪ ∃x(A1 ∧ · · · ∧ An ∧ ¬B) unsatisfiable

T |= ∀x(
∨n

i=1 Ai ∨
∨m

j=1 ¬Bj ) iff T ∪ ∃x(¬A1 ∧ · · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm)

unsatisfiable

T -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems

But be careful:

• in Constraint Solving one is interested if a formula is

satisfiable in a given, fixed model of T .

• in T -satisfiability one is interested if a formula is

satisfiable in any model of T at all.
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3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)
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Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers)

y1 ≈ 1 ∧ [(z0 ≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ x0 ∗ x0 + y1) ∨ (z0 6≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ y1)]∧

y ′

1 ≈ 1 ∧ R12 ≈ x′0 ∗ x′0 ∧ R23 ≈ R12 ∗ x′0∧

∧ [(z′0 ≈ R23 ∧ y ′

5 ≈ R12 + 1) ∨ (z′0 6= R23 ∧ y ′

5 ≈ y ′

1)]∧

x0 ≈ x′0 ∧ y0 ≈ y ′

0 ∧ z0 ≈ z′0 =⇒ x0 ≈ x′0 ∧ y3 ≈ y ′

5 ∧ z0 ≈ z′0
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Possibilities for checking it

(1) Abstraction.

Consider ∗ to be a “free” function symbol (forget its properties).

Test it property can be proved in this approximation. If so,

then we know that implication holds also under the normal

interpretation of ∗.

(2) Reasoning about formulae in fragments of arithmetic.
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Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment:

e.g. the class Th∀(Σ-alg) of all universal formulae which are true in

all Σ-algebras.
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Uninterpreted function symbols

Assume Π = ∅ (and ≈ is the only predicate)

In this case we denote the theory of uninterpreted function symbols

by UIF (Σ) (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and

denoted Free(Σ)
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Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

Proof: Follows from the fact that any universal formula is equivalent to a

conjunction of (universally quantified) clauses.
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Solution 1

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j t(x))

Solution 1:

The following are equivalent:

(1) (
∧

i si ≈ ti ) →
∨

j s
′

j ≈ t′j is valid

(2) Eq(∼) ∧ Con(f ) ∧ (
∧

i si∼ti ) ∧ (
∧

j s
′

j 6∼ t′j ) is unsatisfiable.

where Eq(∼) : Refl(∼) ∧ Sim(∼) ∧ Trans(∼)

Con(f ) : ∀x1, . . . , xn, y1, . . . , yn(
∧

xi∼yi→f (x1, . . . , xn) ∼ f (y1, . . . , yn))

Resolution: inferences between transitivity axioms – nontermination
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Solution 2

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j (x))

Solution 2: Ackermann’s reduction.

Flatten the formula (replace, bottom-up, f (c) with a new constant cf
φ 7→ FLAT (φ)

Theorem 3.3.2: The following are equivalent:

(1) (
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j
(c) 6≈ t′

j
(c) is satisfiable

(2) FC ∧ FLAT [(
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c)] is satisfiable

where FC = {c1=d1, . . . cn=dn → cf =df | whenever f (c1, . . . , cn) was renamed to cf

f (d1, . . . , dn) was renamed to df }

Note: The problem is decidable in PTIME (see next pages)

Problem: Naive handling of transitivity/congruence axiom 7→ O(n3)

Goal: Give a faster algorithm
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Example

The following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a

(2) FC ∧ FLAT [C ], where:

FLAT [f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a] is computed by introducing new constants

renaming terms starting with f and then replacing in C the terms with the constants:

• FLAT [f (a, b)
︸ ︷︷ ︸

a1

≈ a ∧ f (f (a, b)
︸ ︷︷ ︸

a1

, b)

︸ ︷︷ ︸

a2

6≈ a] := a1 ≈ a ∧ a2 6≈ a

f (a, b)=a1

f (a1, b)=a2

• FC := (a ≈ a1 → a1 ≈ a2)

Thus, the following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a

(2) (a ≈ a1 → a1 ≈ a2)
︸ ︷︷ ︸

FC

∧ a1 ≈ a ∧ a2 6≈ a
︸ ︷︷ ︸

FLAT [C ]
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Solution 3

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j (x))

i.e. if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

j s
′

j (c)6≈t′j (c)) unsatisfiable.
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Solution 3

Task:

Check if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

k s
′

k
(c)6≈t′

k
(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG’s

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b
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Solution 3

Task: Check if (s1(c)≈t1(c)∧ · · · ∧ sk (c)≈tk (c)∧ s(c)6≈t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG’s

- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

- compute the “congruence closure” Rc of R

- check whether (v1, v3) ∈ Rc
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Computing the congruence closure of a DAG

• DAG structures:

- G = (V ,E) directed graph

- Labelling on vertices

λ(v): label of vertex v

δ(v): outdegree of vertex v

- Edges leaving the vertex v are ordered

(v [i ]: denotes i-th successor of v)

Example

2v
f

f

ba

v
1

3v 4v

λ(v1) = λ(v2) = f

λ(v3) = a,λ(v4) = b

δ(v1) = δ(v2) = 2

δ(v3) = δ(v4) = 0

v1[1] = v2, v2[2] = v4

...
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Congruence closure of a DAG/Relation

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

The congruence closure of R is the smallest relation Rc on V which is:

• reflexive

• symmetric

• transitive

• congruence:

If λ(u) = λ(v) and δ(u) = δ(v)

and for all 1 ≤ i ≤ δ(u): (u[i ], v [i ]) ∈ Rc

then (u, v) ∈ Rc . 2v

2v
f

ba3v 4v

f

v
1

f

ba3v 4v
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