Decision Procedures in Verification

Decision Procedures (1)

5.12.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted) Models, Validity, and Satisfiability Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution (Soundness, refutational completeness, refinements)

Consequences: Compactness of FOL; The Löwenheim-Skolem Theorem; Craig interpolation

Decidable subclasses of FOL

The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses) The Ackermann class The monadic class Monadic first-order logic (MFO) is FOL (without equality) over purely relational signatures $\Sigma = (\Omega, \Pi)$, where $\Omega = \emptyset$, and every $p \in \Pi$ has arity 1.

Abstract syntax:

$$\Phi := \top \mid P(x) \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \forall x \Phi$$

- All predicates unary
- No functions
- No restrictions on the formulae or on the quantifier prefix

MFO Abstract syntax: $\Phi := \top | P(x) | \Phi_1 \land \Phi_2 | \neg \Phi | \forall x \Phi$

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0, 1\}^k$.

Idea. Let Φ be a MFO formula with k predicate symbols.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}\}_{p \in \Pi})$ be a Σ -algebra. The only way to distinguish the elements of $U_{\mathcal{A}}$ is by the atomic formulae $p(x), p \in \Pi$.

- the elements which a ∈ U_A which belong to the same p_A's, p ∈ Π can be collapsed into one single element.
- if Π = {p¹,..., p^k} then what remains is a *finite structure* with at most 2^k elements.
- the truth value of a formula: computed by evaluating all subformulae.

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0, 1\}^k$.

Proof: Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \ldots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \ldots, b_k) \mid b_i = 1\}$. Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \ldots, p_{\mathcal{A}}^k\}), \ \beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$. We construct a model for Φ with cardinality at most 2^k as follows:

• Let $h : \mathcal{A} \to \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

 $h(a) = (b_1, \ldots, b_k)$ where $b_i = 1$ if $a \in p_{\mathcal{A}}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all i = 1, ..., k.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$. Structural induction

The Monadic Class

To show: $(\mathcal{A}(\beta)(\Phi) = \mathcal{B}'(\beta \circ h)(\Phi).$

Induction on the structure of $\boldsymbol{\Phi}$

Induction base: Show that claim is true for all atomic formulae

- $\Phi = \top \mathsf{OK}$
- $\Phi = p^i(x)$.

Then the following are equivalent:

(1)
$$(\mathcal{A}, \beta) \models \Phi$$

(2) $\beta(x) \in p_{\mathcal{A}}^{i}$
(3) $h(\beta(x)) \in p_{\mathcal{B}}^{j}$
(4) $(\mathcal{B}', \beta \circ h) \models \Phi$

 $\begin{array}{l} (\text{definition}) \\ (\text{definition of } h \text{ and of } p^i_{\mathcal{B}}) \\ (\text{definition}) \end{array}$

The Monadic Class

Induction on the structure of $\boldsymbol{\Phi}$

Let Φ be a formula which is not atomic.

Assume statement holds for the (direct) subformulae of Φ . Prove that it holds for Φ .

• $\Phi = \Phi_1 \wedge \Phi_2$

Assume $(\mathcal{A}, \beta) \models \Phi$. Then $(\mathcal{A}, \beta) \models \Phi_i$, i = 1, 2. By induction hypothesis, $(\mathcal{B}', \beta \circ h) \models \Phi_i$, i = 1, 2. Thus, $(\mathcal{B}', \beta \circ h) \models \Phi = \Phi_1 \land \Phi_2$

The converse can be proved similarly.

• $\Phi = \neg \Phi_1$

The following are equivalent:

(1)
$$(\mathcal{A}, \beta) \models \Phi = \neg \Phi_1.$$

(2) $\mathcal{A}(\beta)(\Phi_1) = 0$
(3) $\mathcal{B}'(\beta \circ h)(\Phi_1) = 0$
(4) $(\mathcal{B}', \beta \circ h) \models \Phi = \neg \Phi_1$

(induction hypothesis)

The Monadic Class

• $\Phi = \forall x \Phi_1(x).$

Then the following are equivalent:

(1)
$$(\mathcal{A}, \beta) \models \Phi$$

(2) $\mathcal{A}(\beta[x \mapsto a])(\Phi_1) = 1$ for all $a \in U_{\mathcal{A}}$
(3) $\mathcal{B}'(\beta[x \mapsto a] \circ h)(\Phi_1) = 1$ for all $a \in U_{\mathcal{A}}$ (ind. hyp)
(4) $\mathcal{B}'(\beta \circ h[x \mapsto b])(\Phi_1) = 1$ for all $b \in \{0, 1\}^k \cap h(\mathcal{A})$
(5) $(\mathcal{B}', \beta \circ h) \models \Phi$

Resolution-based decision procedure for the Monadic Class (and for several other classes):

William H. Joyner Jr. Resolution Strategies as Decision Procedures.

```
J. ACM 23(3): 398-417 (1976)
```

Idea:

- Use orderings to restrict the possible inferences
- Identify a class of clauses (with terms of bounded depth) which contains the type of clauses generated from the respective fragment and is closed under ordered resolution (+ red. elim. criteria)
- Show that a saturation of the clauses can be obtained in finite time

Resolution-based decision procedure for the Monadic Class:

- $\Phi: \quad \forall \overline{x}_1 \exists \overline{y}_1 \dots \forall \overline{x}_k \exists \overline{y}_k (\dots p^s(x_i) \dots p^l(y_i) \dots)$
- $\mapsto \quad \forall \overline{x}_1 \dots \forall \overline{x}_k (\dots p^s(x_i) \dots p^l(f_{\mathsf{sk}}(\overline{x}_1, \dots, \overline{x}_i) \dots))$

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears
- each variable-disjoint partition has at most $n = \sum_{i=1} |\overline{x}_i|$ variables (can order the variables as x_1, \ldots, x_n)
- the variables of each non-ground block can occur either in atoms $p(x_i)$ or in atoms $P(f_{sk}(x_1, ..., x_t))$, $0 \le t \le n$

It can be shown that this class contains all CNF's of formulae in the monadic class and is closed under ordered resolution.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Alternative question:

Is $\forall x, y(x * y = y * x)$ true in the class of all groups?

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae. the models of \mathcal{F} : $Mod(\mathcal{F}) = \{\mathcal{A} \in \Sigma\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

Semantic view

given a class ${\mathcal M}$ of $\Sigma\text{-algebras}$

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Let $\Sigma = (\Omega, \Pi)$ be a signature.

 \mathcal{M} : class of Σ -algebras. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

 $\begin{array}{l} \mathcal{F}: \mbox{ class of (closed) first-order formulae.} \\ & \mbox{ The theory } \mathcal{T} = \mbox{Th}(\mbox{Mod}(\mathcal{F})) \mbox{ is decidable} \\ & \mbox{ iff} \\ & \mbox{ there is an algorithm which, for every closed first-order formula } \phi, \mbox{ can} \\ & \mbox{ decide (in finite time) whether } \mathcal{F} \models \phi \mbox{ or not.} \end{array}$

Undecidable theories

- •Th(($\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}$))
- $\bullet \mathsf{Th}(\Sigma\text{-}\mathsf{alg})$

Peano arithmetic

Peano axioms:	$\forall x \neg (x + 1 \approx 0)$	(zero)
	orall x orall y (x+1 pprox y+1 ightarrow x pprox y	(successor)
	$F[0] \land (\forall x (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$	(induction)
	$\forall x (x + 0 \approx x)$	(plus zero)
	$orall x$, $y\left(x+(y+1)pprox(x+y)+1 ight)$	(plus successor)
	$\forall x, y (x * 0 pprox 0)$	(times 0)
	$orall x$, $y \left(x st \left(y+1 ight) pprox x st y+x ight)$	(times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: (\mathbb{N} , {0, 1, +, *}, { \approx, \leq })

(does not capture true arithmetic by Goedel's incompleteness theorem)

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
 Signature: ({0, 1, +}, {≈, ≤}) (no *)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• $\mathsf{Th}(\mathbb{Z}_+)$ $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on $\ensuremath{\mathcal{L}}$

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem	
$\mathcal{L} = \{ \forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic} \}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	Th _{∀,cl}
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	Th_\forall
$\mathcal{L} = \{\exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L} = \{ \forall x \exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic} \}$	unification with constants	$Th_{\forall\exists}$

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 $\begin{array}{l} \mathcal{T}\text{-satisfiability: Let }\mathcal{T} \text{ be a first-order theory in signature } \Sigma\\ \text{ Let }\mathcal{L} \text{ be a class of (closed) }\Sigma\text{-formulae}\\ \neg \mathcal{L} = \{\neg \phi \mid \phi \in \mathcal{L}\} \end{array}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on $\mathcal L$ / $\neg \mathcal L$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

Common restrictions on $\mathcal L$ / $\neg \mathcal L$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

$\mathcal{T}\text{-}validity$ vs. $\mathcal{T}\text{-}satisfiability$

$$\mathcal{T} \models \forall x A(x)$$

$$\mathcal{T} \models \forall x (A_1 \land \cdots \land A_n \to B)$$

$$\mathcal{T} \models \forall x (\bigvee_{i=1}^n A_i \lor \bigvee_{j=1}^m \neg B_j)$$

iff
$$\mathcal{T} \cup \exists x \neg A(x)$$
 unsatisfiableiff $\mathcal{T} \cup \exists x(A_1 \land \cdots \land A_n \land \neg B)$ unsatisfiableiff $\mathcal{T} \cup \exists x(\neg A_1 \land \cdots \land \neg A_n \land B_1 \land \cdots \land B_m)$ unsatisfiable

$\mathcal{T}\text{-satisfiability vs.}$ Constraint Solving

The field of Constraint Solving also deals with satisfiability problems But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T} .
- in \mathcal{T} -satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification

 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

1:	y := 1	1: y := 1
2:	if $z = x * x * x$	2: R1 := x*x
3:	then $y := x * x + y$	3: R2 := R1*x
4:	endif	4: jmpNE(z,R2,6)
		5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$y_{1} \approx 1 \land [(z_{0} \approx x_{0} * x_{0} \wedge x_{0} \land y_{3} \approx x_{0} + y_{1}) \lor (z_{0} \not\approx x_{0} * x_{0} \land y_{3} \approx y_{1})] \land$$

$$y_{1}' \approx 1 \land R_{1_{2}} \approx x_{0}' \ast x_{0}' \land R_{2_{3}} \approx R_{1_{2}} \ast x_{0}' \land$$

$$\land [(z_{0}' \approx R_{2_{3}} \land y_{5}' \approx R_{1_{2}} + 1) \lor (z_{0}' \neq R_{2_{3}} \land y_{5}' \approx y_{1}')] \land$$

$$x_{0} \approx x_{0}' \land y_{0} \approx y_{0}' \land z_{0} \approx z_{0}' \implies x_{0} \approx x_{0}' \land y_{3} \approx y_{5}' \land z_{0} \approx z_{0}'$$

(1) **Abstraction**.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma\text{-alg}$ be the class of all $\Sigma\text{-structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $Th_{\forall}(\Sigma$ -alg) of all universal formulae which are true in all Σ -algebras.

Uninterpreted function symbols

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $Free(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Solution 1

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x})$

Solution 1:

The following are equivalent:

(1)
$$(\bigwedge_{i} s_{i} \approx t_{i}) \rightarrow \bigvee_{j} s_{j}' \approx t_{j}'$$
 is valid
(2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_{i} s_{i} \sim t_{i}) \wedge (\bigwedge_{j} s_{j}' \not\sim t_{j}')$ is unsatisfiable.
where $Eq(\sim)$: $Refl(\sim) \wedge Sim(\sim) \wedge Trans(\sim)$
 $Con(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}(\bigwedge x_{i} \sim y_{i} \rightarrow f(x_{1}, \ldots, x_{n}) \sim f(y_{1}, \ldots, y_{n}))$

Resolution: inferences between transitivity axioms – nontermination

Solution 2

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x})$

Solution 2: Ackermann's reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant $c_f \phi \mapsto FLAT(\phi)$

Theorem 3.3.2: The following are equivalent:

(1) $(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})$ is satisfiable (2) $FC \land FLAT[(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})]$ is satisfiable where $FC = \{c_{1}=d_{1}, \ldots, c_{n}=d_{n} \rightarrow c_{f}=d_{f} \mid \text{ whenever } f(c_{1}, \ldots, c_{n}) \text{ was renamed to } c_{f} \in f(d_{1}, \ldots, d_{n}) \text{ was renamed to } d_{f}\}$

Note: The problem is decidable in PTIME (see next pages) Problem: Naive handling of transitivity/congruence axiom $\mapsto O(n^3)$ Goal: Give a faster algorithm

The following are equivalent:

- (1) $C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$
- (2) $FC \wedge FLAT[C]$, where:

 $FLAT[f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

•
$$FLAT[f(a, b) \approx a \land f(f(a, b), b) \not\approx a] := a_1 \approx a \land a_2 \not\approx a$$

• $FC := (a \approx a_1 \rightarrow a_1 \approx a_2)^{a_2}$
 $f(a, b) = a_1$
 $f(a, b) = a_2$

Thus, the following are equivalent:

(1)
$$C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$$

(2) $(a \approx a_1 \rightarrow a_1 \approx a_2) \wedge a_1 \approx a \wedge a_2 \not\approx a$
 FC
 $FLAT[C]$

Solution 3

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{i=1}^m s'_i(\overline{x}) \approx t'_i(\overline{x}))$

i.e. if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c}))$ unsatisfiable.

Solution 3

Task:

Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_k s'_k(\overline{c}) \not\approx t'_k(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_1 : f(f(a, b), b)$$

 $v_2 : f(a, b)$
 $v_3 : a$
 $v_4 : b$

Task: Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land s(\overline{c}) \not\approx t(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_{1} : f(f(a, b), b)$$

$$v_{2} : f(a, b)$$

$$v_{3} : a$$

$$v_{4} : b$$

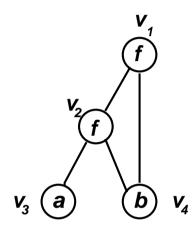
$$R : \{(v_{2}, v_{3})\}$$

- compute the "congruence closure" R^c of R
- check whether $(v_1, v_3) \in R^c$

Computing the congruence closure of a DAG

Example

- DAG structures:
 - G = (V, E) directed graph
 - Labelling on vertices
 - $\lambda(v)$: label of vertex v $\delta(v)$: outdegree of vertex v
 - Edges leaving the vertex v are ordered
 (v[i]: denotes i-th successor of v)



$$\lambda(v_1) = \lambda(v_2) = f$$
$$\lambda(v_3) = a, \lambda(v_4) = b$$
$$\delta(v_1) = \delta(v_2) = 2$$
$$\delta(v_3) = \delta(v_4) = 0$$
$$v_1[1] = v_2, v_2[2] = v_4$$

Congruence closure of a DAG/Relation

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$

The congruence closure of R is the smallest relation R^c on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u) = \lambda(v)$ and $\delta(u) = \delta(v)$ and for all $1 \le i \le \delta(u)$: $(u[i], v[i]) \in R^c$ then $(u, v) \in R^c$.

