
Decision Procedures in Verification

Decision Procedures (2)

12.12.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Decidable subclasses of FOL

The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses)

The Ackermann class

The monadic class

Decision problems/restrictions

Uninterpreted function symbols

2

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• Th(Z+) Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

3

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]

4

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

5

Problems

T : first-order theory in signature Σ; L class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={∀xA(x) | A atomic} word problem

L={∀x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th∀Horn

L={∀xC(x) | C(x) clause} clausal validity problem Th∀,cl

L={∀xφ(x) | φ(x) unquantified} universal validity problem Th∀

L={∃xA1∧ . . .∧An | Ai atomic} unification problem Th∃

L={∀x∃xA1∧ . . .∧An | Ai atomic} unification with constants Th∀∃

6

T -validity vs. T -satisfiability

T -validity: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

Given φ in L, is it the case that T |= φ?

Remark: T |= φ iff T ∪ ¬φ unsatisfiable

Every T -validity problem has a dual T -satisfiability problem:

T -satisfiability: Let T be a first-order theory in signature Σ

Let L be a class of (closed) Σ-formulae

¬L = {¬φ | φ ∈ L}

Given ψ in ¬L, is it the case that T ∪ ψ is satisfiable?

7

T -validity vs. T -satisfiability

Common restrictions on L / ¬L

L ¬L

{∀xA(x) | A atomic} {∃x¬A(x) | A atomic}

{∀x(A1∧ . . .∧An→B) | Ai ,B atomic} {∃x(A1∧ . . .∧An∧¬B) | Ai ,B atomic}

{∀x
∨

Li | Li literals} {∃x
∧

L′i | L
′

i literals}

{∀xφ(x) | φ(x) unquantified} {∃xφ′(x) | φ′(x) unquantified}

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability

of conjunctions of ground literals

8

Theory of Uninterpreted Function Symbols

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)

Example: Compiler Validation

9

Solutions

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j t(x))

Solution 1:

The following are equivalent:

(1) (
∧

i si ≈ ti) →
∨

j s
′

j ≈ t′j is valid

(2) Eq(∼) ∧ Con(f) ∧ (
∧

i si∼ti) ∧ (
∧

j s
′

j 6∼ t′j) is unsatisfiable.

where Eq(∼) : Refl(∼) ∧ Sim(∼) ∧ Trans(∼)

Con(f) : ∀x1, . . . , xn, y1, . . . , yn(
∧

xi∼yi→f (x1, . . . , xn) ∼ f (y1, . . . , yn))

Resolution: inferences between transitivity axioms – nontermination

10

Solutions

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j (x))

Solution 2: Ackermann’s reduction.

Flatten the formula (replace, bottom-up, f (c) with a new constant cf
φ 7→ FLAT (φ)

Theorem 3.3.2: The following are equivalent:

(1) (
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c) is satisfiable

(2) FC ∧ FLAT [(
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c)] is satisfiable

where FC = {c1=d1, . . . cn=dn → cf =df | whenever f (c1, . . . , cn) was renamed to cf

f (d1, . . . , dn) was renamed to df }

Note: The problem is decidable in PTIME

Problem: Naive handling of transitivity/congruence axiom 7→ O(n3)

Refinements: e.g. rewriting, superposition – not in this lecture

Goal: Give a faster algorithm

11

Solutions

Task:

Check if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

k s
′

k (c)6≈t′k (c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG’s

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

12

Solutions

Task: Check if (s1(c)≈t1(c)∧ · · · ∧ sk (c)≈tk (c)∧ s(c)6≈t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG’s

- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

- compute the “congruence closure” Rc of R

- check whether (v1, v3) ∈ Rc

13

Computing the congruence closure of a DAG

• DAG structures:

- G = (V ,E) directed graph

- Labelling on vertices

λ(v): label of vertex v

δ(v): outdegree of vertex v

- Edges leaving the vertex v are ordered

(v [i]: denotes i-th successor of v)

Example

2v
f

f

ba

v
1

3v 4v

λ(v1) = λ(v2) = f

λ(v3) = a,λ(v4) = b

δ(v1) = δ(v2) = 2

δ(v3) = δ(v4) = 0

v1[1] = v2, v2[2] = v4

...

14

Congruence closure of a DAG/Relation

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

The congruence closure of R is the smallest relation Rc on V which is:

• reflexive

• symmetric

• transitive

• congruence:

If λ(u) = λ(v) and δ(u) = δ(v)

and for all 1 ≤ i ≤ δ(u): (u[i], v [i]) ∈ Rc

then (u, v) ∈ Rc . 2v

2v
f

ba3v 4v

f

v
1

f

ba3v 4v

15

Congruence closure of a relation

Recursive definition

(u, v) ∈ R

(u, v) ∈ Rc

(v , v) ∈ Rc

(u, v) ∈ Rc

(v , u) ∈ Rc

(u, v) ∈ Rc (v ,w) ∈ Rc

(u,w) ∈ Rc

λ(u) = λ(v) u, v have n successors and (u[i], v [i]) ∈ Rc for all 1 ≤ i ≤ n

(u, v) ∈ Rc

• The congruence closure of R is the smallest set closed under these rules

16

Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence

closure of a graph G and a set R of pairs of vertices

• Use A for checking whether
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j is satisfiable.

(1) Construct graph corresponding to the terms occurring in si , ti , s
′

j , t
′

j

Let vt be the vertex corresponding to term t

(2) Let R = {(vsi , vti) | i ∈ {1, . . . , n}}

(3) Compute Rc .

(4) Output “Sat” if (vs′
j
, vt′

j
) 6∈ Rc for all 1 ≤ j ≤ m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

17

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof (⇒)

Assume A is a Σ-structure such that A |=
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j .

We can show that [vs]Rc = [vt]Rc implies that A |= s = t (Exercise).

(We use the fact that if [vs]Rc = [vt]Rc then there is a derivation for

(vs , vt) ∈ Rc in the calculus defined before; use induction on length of

derivation to show that A |= s = t.)

As A |= s′j 6≈ t′j , it follows that [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

18

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof(⇐) Assume that [vs′
j
]Rc 6= [vt′

j
]Rc for all 1 ≤ j ≤ m. We construct a

structure that satisfies
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j

• Universe is quotient of V w.r.t. Rc plus new element 0.

• c constant 7→ cA = [vc]Rc .

• f /n 7→ fA([v1]Rc , . . . , [vn]Rc) =















[vf (t1,...,tn)]Rc if vf (t1,...,tn) ∈ V ,

[vti]Rc = [vi]Rc for 1≤i≤n

0 otherwise

well-defined because Rc is a congruence.

• It holds that A |= s′j 6≈ t′j and A |= si ≈ ti

19

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Compute Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

20

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V ; (v , v ′) ∈ V 2

Task: Check whether (v , v ′) ∈ Rc

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Decide whether (v1, v3) ∈ Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

21

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

- Congruence relation 7→ corresponding partition

22

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

u

vFind(t)

t

- Congruence relation 7→ corresponding partition

- Use procedures which operate on the partition:

FIND(u): unique name of equivalence class of u

UNION(u, v) combines equivalence classes of u, v

finds repr. tu , tv of equiv.cl. of u, v ; sets FIND(u) to tv

23

Computing the congruence closure of a DAG

MERGE(u, v) Input: G = (V , E) DAG + labelling

R relation on V closed under congruence

u, v ∈ V

Output: the congruence closure of R ∪ {(u, v)}

If FIND(u) = FIND(v) [same canonical representative] then Return

If FIND(u) 6= FIND(v) then [merge u, v ; recursively-predecessors]

Pu := set of all predecessors of vertices w with FIND(w) = FIND(u)

Pv := set of all predecessors of vertices w with FIND(w) = FIND(v)

Call UNION(u, v) [merge congruence classes]

For all (x , y) ∈ Pu × Pv do: [merge congruent predecessors]

if FIND(x) 6= FIND(y) and CONGRUENT(x , y) then MERGE(x , y)

u

v

CONGRUENT(x , y)

if λ(x) 6= λ(y) then Return FALSE

For 1 ≤ i ≤ δ(x) if FIND(x[i]) 6= FIND(y [i]) then Return FALSE

Return TRUE.

24

Correctness
Proof:

(1) Returned equivalence relation is not too coarse

If x , y merged then (x , y) ∈ (R ∪ {(u, v)})c

(UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x , y vertices s.t. (x , y) ∈ (R ∪ {(u, v)})c then they are merged by the algorithm.

Induction of length of derivation of (x , y) from (R ∪ {(u, v)})c

(1) (x , y) ∈ R OK (they are merged)

(2) (x , y) 6∈ R. The only non-trivial case is the following:

λ(x) = λ(y), x , y have n successors xi , yi where

(xi , yi) ∈ (R ∪ {(u, v)})c for all 1 ≤ i ≤ b.

Induction hypothesis: (xi , yi) are merged at some point

(become equal during some call of UNION(a, b), made in some MERGE(a, b))

Successor of x equivalent to a (or b) before this call of UNION; same for y .

⇒ MERGE must merge x and y

25

Computing the Congruence Closure

Let G = (V ,E) graph and R ⊆ V × V

CC(G ,R) computes the Rc :

(1) R0 := ∅; i := 1

(2) while R contains ”fresh” elements do:

pick ”fresh” element (u, v) ∈ R

Ri := MERGE(u, v) for G and Ri−1; i := i + 1.

Complexity: O(n2)

Downey-Sethi-Tarjan congruence closure algorithm:

more sophisticated version of MERGE (complexity O(n · logn))

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on

congruence closure. Journal of the ACM, 27(2):356-364, 1980.

26

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

F = s1 ≈ t1 ∧ · · · ∧ sn ≈ tn ∧ s′1 6≈ t′1 ∧ · · · ∧ s′m 6≈ t′m

Solution: Let SF be the set of all subterms occurring in F

1. Construct the DAG for SF ; R0 = Id

2. [Build Rn the congruence closure of {(v(s1), v(t1)), . . . , (v(sn), v(tn))}]

For i ∈ {1, . . . , n} do Ri := MERGE(vsi , vti) w.r.t. Ri−1

3. If FIND(vs′
j
) = FIND(vt′

j
) for some j ∈ {1, . . . ,m} then return unsatisfiable

4. else [if FIND(vs′
j
) 6= FIND(vt′

j
) for all j ∈ {1, . . . ,m}] then return satisfiable

27

Example

f (a, b) ≈ a → f (f (a, b), b) ≈ a

Test: unsatisfiability of

f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task:

• Compute Rc

• Decide whether (v1, v3) ∈ Rc

Solution:

1. Construct DAG in the figure; R0 = Id .

2. Compute R1 := MERGE((v2, v3)

[Test representatives]

FIND(v2) = v2 6= v3 = FIND(v3)

Pv2
:= {v1};Pv3

:= {v2}

[Merge congruence classes]

UNION(v2, v3): sets FIND(v2) to v3.

[Compute and recursively merge predecessors]

Test: FIND(v1) = v1 6= v3 = FIND(v2)

CONGR(v1, v2)

MERGE(v1, v2): (different representatives)

calls UNION(v1, v2) which

sets FIND(v1) to v3.

3. Test whether FIND(v1) = FIND(v3). Yes.

Return unsatisfiable.

28

3.4. Decision procedures for numeric domains

• Peano arithmetic

• Theory of real numbers

• Linear arithmetic

• over N/Z

• over R/Q

Decision procedures

• Light-weight fragments of linear arithmetic: Difference logic

• Full fragment (LI (R) or LI (Q)

29

Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {<}) (also with ≈)

(does not capture true arithmetic by Goedel’s incompleteness theorem)

Undecidable

30

Theory of integers

•Th((Z, {0, 1,+, ∗}, {<}))

Undecidable

31

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same

properties as real numbers)

Axioms:

• the ordered field axioms;

• axiom asserting that every positive number has a square root; and

• an axiom scheme asserting that all polynomials of odd order have at

least one real root.

Tarski (1951) proved that the theory of real closed fields, including

the binary predicate symbols ”=”, ” 6=”, and ”<”, and the operations

of addition and multiplication, admits elimination of quantifiers,

which implies that it is a complete and decidable theory.

32

Linear arithmetic

Syntax

• Signature Σ = ({0/0, s/1,+/2}, {< /2})

• Terms, atomic formulae – as usual

Example: 3 ∗ x1 + 2 ∗ x2 ≤ 5 ∗ x3 abbreviation for

(x1 + x1 + x1) + (x2 + x2) ≤ (x3 + x3 + x3 + x3 + x3)

33

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

34

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

Linear arithmetic over N/Z

Th(Z+) Z+ = (Z, 0, s, +,<) the standard interpretation of integers.

Axiomatization

Linear arithmetic over Q/R

Th(R) R = (R, {0, 1,+}, {<}) the standard interpretation of reals;

Th(Q) Q = (Q, {0, 1,+}, {<}) the standard interpretation of rationals.

Axiomatization

35

Outline

We first present an efficient method for checking the satisfiability

of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking

the satisfiability of arbitrary formulae in linear arithmetic.

36

Simple fragments of linear arithmetic

• Difference logic

check satisfiability of conjunctions of constraints of the form

x − y ≤ c

• UTVPI (unit, two variables per identity)

check satisfiability of conjunctions of constraints of the form

ax + by ≤ c, where a, b ∈ {−1, 0, 1}

37

Application: Program Verification

i := 1, n < m

while i < n

do

i := i + 1

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

....

od

Task: i ≤ s always during the execution of this program.

38

Application: Program Verification

i := 1, n < m

while i < n

do

i := i + 1

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

....

od

Task: i ≤ s always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after

every update of i .

39

Application: Program Verification

i := 1, n < m

while i < n

do

i := i + 1

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

....

od

Task: i ≤ s always during the execution of this program.

Solution: Show that i ≤ s is an invariant of the program:

1) It holds at the first line: i = 1 → i ≤ s

2) It is preserved under the updates in the while loop:

∀n,m, s, i , i ′ (n < m ∧ 1 < m < s ∧ i ≤ n ∧ i ≤ s ∧ i ′ ≈ i + 1 → i ′ ≤ s)

40

Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

x − y ≤ c

where x , y are variables and c is a numerical constant.

• The set of formulae is:

F ,G ,H ::= A (atomic formula)

| (F ∧ G) (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is Q or

resp. Z.

41

Positive difference logic

A decision procedure for positive difference logic (≤ only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.

G(S) = (V ,E ,w), the inequality graph of S , is a weighted graph with:

• V = X (S), the set of variables occurring in S

• e = (x , y) ∈ E with w(e) = c iff x − y ≤ c ∈ S

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford

algorithm for finding the single-source shortest paths in a directed weighted

graph in time O(|V | · |E |). (Side-effect of the algorithm exploited - if there

exists a negative cycle in the graph then the algorithm finds it and aborts.)

42

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇒) Assume S satisfiable. Let β : X → Z satisfying assignment.

Let v1
c12→ v2

c23→ · · ·
cn−1,n
→ vn

cn1→ v1 be a cycle in G(S).

Then: β(v1)− β(v2) ≤ c12

β(v2)− β(v3) ≤ c23

. . .

g β(vn)− β(v1) ≤ cn1

0 = β(v1)− β(v1) ≤
∑n−1

i=1 ci ,i+1 + cn1

Thus, for satisfiability it is necessary that all cycles are positive.

43

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇐) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s.

(This does not introduce negative cycles.)

Let δuv denote the minimal weight of the paths from u to v .

• δuv = ∞ if there is no path from u to v .

• well-defined since there are no negative cycles

Define β : V → Z by β(v) = δvs . Claim: β satisfying assignment for S .

Let x − y ≤ c ∈ S . Consider the shortest paths from x to s and from y to

s. By the triangle inequality, δxs ≤ c + δys , i.e. β(x)− β(y) ≤ c.

44

