Decision Procedures in Verification

Decision Procedures (2)

12.12.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Decidable subclasses of FOL

The Bernays-Schonfinkel class

(definition; decidability;tractable fragment: Horn clauses)
The Ackermann class
The monadic class

Decision problems/restrictions

Uninterpreted function symbols

Examples

In order to obtain decidability results:
e Restrict the signature
e Enrich axioms

e Look at certain fragments

Decidable theories

e Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
Signature: ({0,1, 4}, {~, <}) (no %)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

e Th(Z4+) Z+ = (Z,0,s,+, <) the standard interpretation of integers.

Examples

In order to obtain decidability results:
e Restrict the signature
e Enrich axioms

e Look at certain fragments

Decidable theories

e The theory of real numbers (with addition and multiplication)
is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:
e Restrict the signature
e Enrich axioms

e Look at certain fragments

Problems

T first-order theory in signature ¥; L class of (closed) ¥-formulae

Given ¢ in L, is it the case that T = ¢7?

\

Common restrictions on L

Pred =0 {peL|TE=e¢}
L={VxA(x) | A atomic} word problem
L={Vx(Ai1N...NA,—B) | A;, B atomic} uniform word problem ThyHorn
L={VxC(x) | C(x) clause} clausal validity problem Thy
L={Vxp(x) | ¢(x) unquantified} universal validity problem Thy
L={3xA1N...NA, | A; atomic} unification problem Ths

L={Vx3IxAIN ... NA, | A; atomic} unification with constants Thys

T-validity vs. 7T -satisfiability

T-validity: Let 7 be a first-order theory in signature X
Let £ be a class of (closed) ¥-formulae

Given ¢ in L, is it the case that T = ¢?

L

Remark: 7 |= ¢ iff T U —¢ unsatisfiable

Every 7T -validity problem has a dual 7 -satisfiability problem:

r

T -satisfiability: Let 7 be a first-order theory in signature X
Let £ be a class of (closed) ¥-formulae

—L={-¢|¢ecL}

Given 9 in =L, is it the case that 7 U is satisfiable?

T-validity vs. 7T -satisfiability

Common restrictions on £ / —L

L —L
{VxA(x) | A atomic} {Ix—-A(x) | A atomic}
{Vx(A1N...NA,—B) | A;, B atomic} {3x(AiA... NAA—-B) | Aj, B atomic}
{VxV/ L; | L; literals} {Ix A L | L? literals}
{Vxo(x) | ¢(x) unquantified} {Ixd’(x) | ¢’ (x) unquantified}
validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability
of conjunctions of ground literals

Theory of Uninterpreted Function Symbols

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)

Example: Compiler Validation

Solutions

Task:
Check if UIF |= Vx(s1(X)=t1(X) A - A sp(X)~te(X) = Vi st (X)=t (X))

Solution 1:

The following are equivalent:

(1) (A;simt)— Vs ~t]is valid
(2) Eq(~) A Con(f) A (N;si~ti) AN(/\;s] # t7) is unsatisfiable.

where Eq(~) : Refl(~) A Sim(~) A Trans(~)

Con(f) : Vx1, ..., Xn, Y1, -+ s Yan(A\ xi~yi—F(x1, ..., xn) ~ f(y1, ...

Resolution: inferences between transitivity axioms — nontermination

, Yn))

10

Solutions

Task:
Check if UIF = VX(s1(X)~t1(X) A -+ A s(X)=t(X) — \/Jm:1 sj’(i)ztj’(?))

Solution 2: Ackermann’s reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant cf
¢ — FLAT ()

Theorem 3.3.2: The following are equivalent:
(1) (A;si(c) = ti(S)) AN s;(c) # t/(c) Iis satisfiable
=\ ~~ (=) —) /— . T
(2) FC A FLAT[(A,; si(€) = ti(S)) AN, s;(€) # t; ()] is satisfiable
where FC = {ca=d1, ... c,=d, — cr=dr | whenever f(c1, ..., c,) was renamed to ¢

f(di,...,d,) was renamed to dr}

Note: The problem is decidable in PTIME

Problem: Naive handling of transitivity /congruence axiom — O(n’)
Refinements: e.g. rewriting, superposition — not in this lecture

Goal: Give a faster algorithm

11

Solutions

Task:
Check if (s1(c)~t1(C) A -+ - A sp(C)=te () A N\ si.(€)#t/(C)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG'’s

Example: Check whether f(f(a, b), b) = a is a consequence of f(a, b) = a.

Yy vi : f(f(a, b), b)

P vo : f(a, b)
v v3 . a
5 | va: b
vw(@ O

[

Solutions

Task: Check if (s1(c)=~t1(c) A --- A sk(c)~tk(c) A s(c)%t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f(f(a, b), b) =~ a is a consequence of f(a, b) = a.

vy vi : f(f(a, b), b)

,/"P vo : f(a, b)
l/ V. v3 . d
'\,’— va: b
!
vV, b) v, R : {(VQ, V3)}

- compute the “congruence closure” R¢ of R
- check whether (v1, v3) € R¢

13

Computing the congruence closure of a DAG

e DAG structures:
- G = (V, E) directed graph
- Labelling on vertices

A(v): label of vertex v
o(v): outdegree of vertex v

- Edges leaving the vertex v are ordered
(v[i]: denotes i-th successor of v)

Example

V.

v3 b) v,

)\(Vl) =)x(VQ) =f
AMv3) =a,Awvg) =b

5(V1) = 5(V2) =2
o0(v3) =6(va) =0

vi[l] = vo, »[2] = v

14

Congruence closure of a DAG/Relation

Given: G = (V, E) DAG + labelling
RCVxV

The congruence closure of R is the smallest relation R on V which is:

o reflexive
® symmetric
e transitive
e congruence:
If AM(u) = A(v) and d(u) = 6(v)
and for all 1 <7 < é(u): (u[f], v[i]) € R¢
then (u, v) € R€.

15

Congruence closure of a relation

Recursive definition

(u,v) € R
(u,v) € R¢

(u,v) € R¢ (u,v) € R° (v,w) € R°
(v,v) € R¢ (v,u) € R¢ (u, w) € R€

Au) = A(v) u, v have n successors and (u[i], v[i]) € R forall 1 < i <n
(u,v) € R¢

e The congruence closure of R is the smallest set closed under these rules

16

Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence
closure of a graph G and a set R of pairs of vertices

e Use A for checking whether A[_; s; =~ t; A \IL; sj’ % tj’ is satisfiable.
(1) Construct graph corresponding to the terms occurring in s;, t;, sj’, tj’
Let v+ be the vertex corresponding to term t
(2) Let R={(vs;,vt;) | i € {1,...,n}}
(3) Compute R°€.
(4) Output “Sat” if (VSj/, th’) ¢Z R€ for all 1 < j < m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)

T st AN\, sTt! is satisfiable iff [vs]ge £[v,r]ge for all 1<j<m
=1 Jj=17j g S; tJ

17

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

T osimti AN s/t is satisfiable iff [v | re #[v.]re for all 1<;<m.
=1 Jj=1=;7"7j S; t;

Proof (=)

Assume A is a X-structure such that A |= ALy si = t; A N\L;s! % t].

We can show that [vs]gre = [vt]re implies that A = s = t (Exercise).

(We use the fact that if [vs]gc = [vt]re then there is a derivation for
(vs, vt) € R in the calculus defined before; use induction on length of
derivation to show that A =s =t.)

As A |=s! # t], it follows that [vy]ge #[vys|ge for all 1<j<m
J J

18

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

T osi~t AN s/t s satisfiable iff v/]pe £[vs]ge for all 1<j<m.
=1 Jj=1"<j g S; tJ

Proof(<=) Assume that [v]grec # [vyr]re for all 1 < j < m. We construct a
structure that satisfies /\7211 s; At /< NZis] #t]

e Universe is quotient of V w.r.t. R¢ plus new element O.

e c constant — c 4 = [vc]ge.

Veeey . eylre i Ve ey €V,

of/n— fa([vi]re, ..., [Vnlre) = ¢ [Vt |re = [Vi]re for 1<i<n

0 otherwise

well-defined because R¢ is a congruence.
e It holds that A = sj’ % tj’ and A =s; = t;

19

Computing the congruence closure of a DAG

Given: G = (V, E) DAG + labelling

RCVxV
Task: Compute R (the congruence closure of R)
Example:
f(a,b) ~a— f(f(a,b),b) ~ a
v
1
- =(f Idea:
- R={(v2.)} o
Y - Start with the identity relation R = Id
e - Successively add new pairs of nodes to R¢;
q .
v, G{ b) v, close relation under congruence.

Task: Compute R€

20

Computing the congruence closure of a DAG

Given: G = (V, E) DAG + labelling
RCVxV;(v,v)eV?
Task: Check whether (v, v’) € R€

Example:
f(a,b) ~a— f(f(a,b),b) ~ a
v
1
- (f Idea:
//’ R={(v2, v3)} . . .
Y - Start with the identity relation R = Id
e - Successively add new pairs of nodes to R¢;
y
v, G{ b) v, close relation under congruence.

Task: Decide whether (v1, v3) € R¢

21

Computing the congruence closure of a DAG

Ta

\

sk:

Given: G = (V, E) DAG + labelling
RCVxV

Compute R€ (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R;

(approximating R€) by identifying congruent vertices u, v and

computing R;y1 := congruence closure of R; U {(u, v)}.

Representation:

//

p—

\

N

(

\

\

/

/

- Congruence relation — corresponding partition

22

Computing the congruence closure of a DAG

\

Given: G = (V, E) DAG + labelling
RCVxV

Compute R (the congruence closure of R)

Ta

sk:

Idea: Recursively construct relations closed under congruence R;

(approximating R€) by identifying congruent vertices u, v and

computing R; i1 := congruence closure of R; U {(u, v)}.

Representation:

p—

AED
(F\ivnd(t) v /
_’ //

- Congruence relation +— corresponding partition

- Use procedures which operate on the partition:
FIND(u): unique name of equivalence class of u
UNION(u, v) combines equivalence classes of u, v

finds repr. t,, t, of equiv.cl. of u, v; sets FIND(u) to t,

23

Computing the congruence closure of a DAG

MERGE(u, v) | Input: G = (V, E) DAG + labelling
R relation on V closed under congruence

uveV

Output: the congruence closure of R U {(u, v)}

If FIND(u) = FIND(v) [same canonical representative] then Return

If FIND(u) # FIND(v) then [merge u, v; recursively-predecessors] / N\

P, := set of all predecessors of vertices w with FIND(w) = FIND(u) \

P, := set of all predecessors of vertices w with FIND(w) = FIND(v)

Call UNION(u, v) [merge congruence classes] \ _lv /

For all (x,y) € P, X P, do: [merge congruent predecessors] AN 7
if FIND(x) # FIND(y) and CONGRUENT (x, y) then MERGE(x, y) ~l_1~

CONGRUENT(x, y)

if A(x) # A(y) then Return FALSE
For 1 < i < §(x) if FIND(x[i]) # FIND(y[i]) then Return FALSE

Return TRUE.

24

Correctness

Proof:
(1) Returned equivalence relation is not too coarse

If x, y merged then (x,y) € (RU {(u,v)})°
(UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x, y vertices s.t. (x,y) € (RU {(u, v)})° then they are merged by the algorithm.

Induction of length of derivation of (x, y) from (R U {(u, v)})*

(1) (x,y) € R OK (they are merged)
(2) (x,y) € R. The only non-trivial case is the following:
A(x) = A(y), x, y have n successors x;, y; where
(xi,vi) € (RU{(u,v)}) forall1 < i <b.
Induction hypothesis: (x;, y;) are merged at some point
(become equal during some call of UNION(a, b), made in some MERGE(a, b))
Successor of x equivalent to a (or b) before this call of UNION; same for y.

= MERGE must merge x and y

25

Computing the Congruence Closure

Let G =(V,E) graphand RC V x V

CC(G, R) computes the R€:
(1) Ro :=0;i:=1
(2) while R contains "fresh” elements do:
pick "fresh” element (u,v) € R
R; := MERGE(u, v) for G and R;_1; i := i+ 1.
Complexity: O(n?)

Downey-Sethi-Tarjan congruence closure algorithm:
more sophisticated version of MERGE (complexity O(n - logn))

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on
congruence closure. Journal of the ACM, 27(2):356-364, 1980.

26

Decision procedure for the QF theory of equality

Signature: ¥ (function symbols)
Problem: Test satisfiability of the formula

F = siRtiA--Asp~ty A sl&tIA---Ash &t

Solution: Let Sg be the set of all subterms occurring in F

1. Construct the DAG for Sg; Ry = Id

2. [Build R, the congruence closure of {(v(s1), v(t1)), ..., (v(sn), v(tn))}]
Foric {1,..., n} do R; := MERGE(vs,, v¢;) w.r.t. Ri_1
3. If FIND(v,,) = FIND(v,/) for some j € {1,..., m} then return unsatisfiable
J J

4. else [if FIND(v,s) # FIND(v,/) for all j € {1,..., m}] then return satisfiable
J J

27

Example

f(a,b) ~a— f(f(a,b),b) = a

Test: unsatisfiability of
f(a,b) ~aANf(f(a, b),b)a

Vl
- —(f
e R={(v2, v3)}
I/ V.
1
1 -
v/
v
V, G{ b) v,
Task:

e Compute R¢
e Decide whether (v1, v3) € R€

Solution:
1. Construct DAG in the figure; Ry = Id.
2. Compute R; := MERGE((v2, v3)
[Test representatives]
FIND(v2) = v» # vz = FIND(v3)
P,, = {vn1}; P, = {»}
[Merge congruence classes]
UNION(v,, v3): sets FIND(v») to vs.
[Compute and recursively merge predecessors]
Test: FIND(v1) = v1 # v3 = FIND(w)
CONGR(v1,)
MERGE(vy, v»): (different representatives)

calls UNION(vy, v») which
sets FIND(v;) to vs.

3. Test whether FIND(v;) = FIND(v3). Yes.
Return unsatisfiable.

28

3.4. Decision procedures for numeric domains

e Peano arithmetic

e Theory of real numbers

e Linear arithmetic
e over N/Z
e over R/Q

Decision procedures

e Light-weight fragments of linear arithmetic: Difference logic

e Full fragment (L/(R) or LI(Q)

29

Peano arithmetic

Peano axioms: Vx—(x+1=0) (zero)
VxVy(x+1lxy+1—>x=xy (successor)
F[O] A (Vx (F[x] — F[x 4+ 1]) — VxF[x]) (induction)
Vx(x + 0 = x) (plus zero)
Vx,y(x+(y+1)~(x+y)+1) (plus successor)
Vx,y (x * 0 = 0) (times 0)
Vx,y(x*(y +1) = x*y+ x) (times successor)

3xy—+5>2xyexpressed as Iz(z AO0A3xy +5 2y + z2)

Intended interpretation: (N, {0, 1, 4+, *}, {<}) (also with =)
(does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable

30

Theory of integers

oTh((Z, {0,1,+,},{<}))

Undecidable

31

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same
properties as real numbers)

Axioms:

e the ordered field axioms;

e axiom asserting that every positive number has a square root; and

e an axiom scheme asserting that all polynomials of odd order have at
least one real root.

Tarski (1951) proved that the theory of real closed fields, including
the binary predicate symbols "=", "£", and " <", and the operations
of addition and multiplication, admits elimination of quantifiers,

which implies that it is a complete and decidable theory.

32

Linear arithmetic

Syntax
e Signature ¥ = ({0/0,s/1,+/2},{< /2})

e [erms, atomic formulae — as usual

Example: 3% x3 + 2 % xo < 5 % x3 abbreviation for

(x1+x1+x1)+ (x2+x2) < (x3+ x3+ X3+ X3 + X3)

33

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0, +/2}, {< /2})

and the predefined binary predicate =.

34

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0, +/2}, {< /2})
and the predefined binary predicate =.

Linear arithmetic over N/Z

Th(Z+) Z4+ = (Z,0,s, 4+, <) the standard interpretation of integers.

Axiomatization

Linear arithmetic over Q/R
Th(R) R =(R,{0,1,+},{<}) the standard interpretation of reals;
Th(Q) Q=(Q,{0,1,+},{<}) the standard interpretation of rationals.

Axiomatization

35

Outline

We first present an efficient method for checking the satisfiability
of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking

the satisfiability of arbitrary formulae in linear arithmetic.

36

Simple fragments of linear arithmetic

e Difference logic

check satisfiability of conjunctions of constraints of the form

x—y<c

e UTVPI (unit, two variables per identity)

check satisfiability of conjunctions of constraints of the form

ax + by < c, where a,be {-1,0,1}

37

Application: Program Verification

while 1 < n

do
i=1+1
[** part of a program in which i 1is used as an index in an array
which was declared to be of size s > m (and i is not changed)
* % |
od

Task: i/ < s always during the execution of this program.

38

Application: Program Verification

while 1 < n

do
i=1+1
[** part of a program in which i 1is used as an index in an array
which was declared to be of size s > m (and i is not changed)
* % |
od

Task: i/ < s always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after
every update of /.

39

Application: Program Verification

while 1 < n

do
i =1+ 1
[** part of a program in which i 1is used as an index in an array
which was declared to be of size s > m (and i is not changed)
* %]
od

Task: i/ < s always during the execution of this program.
Solution: Show that / < s is an invariant of the program:
1) It holds at the first line: i=1—i<s

2) It is preserved under the updates in the while loop:
Vn,m,s,i,i’” (n<mAl<m<sAi<nAi<sAiI"=i+1—=i <5s)

40

Positive difference logic

Syntax
The syntax of formulae in positive difference logic is defined as follows:

e Atomic formulae (also called difference constraints) are of the form:
x—y<c

where x, y are variables and ¢ is a numerical constant.

e [he set of formulae is:
F.GH = A (atomic formula)
| (FAG) (conjunction)

Semantics:
Versions of difference logic exist, where the standard interpretation is Q or
resp. Z.

41

Positive difference logic

A decision procedure for positive difference logic (< only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.
G(S) = (V, E, w), the inequality graph of S, is a weighted graph with:

e V = X(S), the set of variables occurring in S
e e=(x,y) € Ewithw(e)=ciffx—y<ceS

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford
algorithm for finding the single-source shortest paths in a directed weighted
graph in time O(|V/| - |E|). (Side-effect of the algorithm exploited - if there
exists a negative cycle in the graph then the algorithm finds it and aborts.)

42

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (=) Assume S satisfiable. Let 8 : X — Z satisfying assignment.
Let vq 1 Vo 23 .. b v, & vi be a cycle in G(S).

Then: B(v1) —B(v) < <o

B(v) —B(vv) < o3

g 5(Vn) — 5(V1) < cm
0= pB(v1)—Bwn) < 27:_11 Cii+1 + Cnl

Thus, for satisfiability it is necessary that all cycles are positive.

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality
graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (<=) Assume that there is no negative cycle.

Add a new vertex s and an O-weighted edge from every vertex in V to s.
(This does not introduce negative cycles.)

Let ,, denote the minimal weight of the paths from u to v.

® 0,y = oo if there is no path from u to v.
e well-defined since there are no negative cycles

Define 8 : V — Z by B(v) = dvs. Claim: (satisfying assignment for S.

Let x — y < c € 5. Consider the shortest paths from x to s and from y to
s. By the triangle inequality, dxs < ¢ + dys, i.e. B(x) — B(y) < c.

44

