Decision Procedures in Verification

Decision Procedures (2)

12.12.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Decidable subclasses of FOL

The Bernays-Schönfinkel class (definition; decidability;tractable fragment: Horn clauses) The Ackermann class The monadic class

Decision problems/restrictions

Uninterpreted function symbols

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
 Signature: ({0, 1, +}, {≈, ≤}) (no *)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

• $Th(\mathbb{Z}_+)$ $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on $\ensuremath{\mathcal{L}}$

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem	
$\mathcal{L} = \{ \forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic} \}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	Th _{∀,cl}
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	Th_\forall
$\mathcal{L} = \{\exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L} = \{ \forall x \exists x A_1 \land \ldots \land A_n \mid A_i \text{ atomic} \}$	unification with constants	Th∀∃

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 $\begin{array}{l} \mathcal{T}\text{-satisfiability: Let }\mathcal{T} \text{ be a first-order theory in signature } \Sigma\\ \text{ Let }\mathcal{L} \text{ be a class of (closed) }\Sigma\text{-formulae}\\ \neg \mathcal{L} = \{\neg \phi \mid \phi \in \mathcal{L}\} \end{array}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on $\mathcal L$ / $\neg \mathcal L$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

Theory of Uninterpreted Function Symbols

- Reasoning about equalities is important in automated reasoning
- Applications to program verification

 (approximation: abstract from additional properties)
 Example: Compiler Validation

Solutions

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \dots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j t(\overline{x}))$

Solution 1:

The following are equivalent:

(1)
$$(\bigwedge_{i} s_{i} \approx t_{i}) \rightarrow \bigvee_{j} s_{j}' \approx t_{j}'$$
 is valid
(2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_{i} s_{i} \sim t_{i}) \wedge (\bigwedge_{j} s_{j}' \not\sim t_{j}')$ is unsatisfiable.
where $Eq(\sim)$: $Refl(\sim) \wedge Sim(\sim) \wedge Trans(\sim)$
 $Con(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}(\bigwedge x_{i} \sim y_{i} \rightarrow f(x_{1}, \ldots, x_{n}) \sim f(y_{1}, \ldots, y_{n}))$

Resolution: inferences between transitivity axioms – nontermination

Solutions

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x})$

Solution 2: Ackermann's reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant $c_f \phi \mapsto FLAT(\phi)$

Theorem 3.3.2: The following are equivalent:

(1)
$$(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})$$
 is satisfiable
(2) $FC \land FLAT[(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})]$ is satisfiable
where $FC = \{c_{1}=d_{1}, \ldots, c_{n}=d_{n} \rightarrow c_{f}=d_{f} \mid \text{ whenever } f(c_{1}, \ldots, c_{n}) \text{ was renamed to } c_{f}$
 $f(d_{1}, \ldots, d_{n}) \text{ was renamed to } d_{f}\}$

Note: The problem is decidable in PTIME Problem: Naive handling of transitivity/congruence axiom $\mapsto O(n^3)$ Refinements: e.g. rewriting, superposition – not in this lecture Goal: Give a faster algorithm

Solutions

Task:

Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_k s'_k(\overline{c}) \not\approx t'_k(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_1 : f(f(a, b), b)$$

 $v_2 : f(a, b)$
 $v_3 : a$
 $v_4 : b$

Task: Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land s(\overline{c}) \not\approx t(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_{1} : f(f(a, b), b)$$

$$v_{2} : f(a, b)$$

$$v_{3} : a$$

$$v_{4} : b$$

$$R : \{(v_{2}, v_{3})\}$$

- compute the "congruence closure" R^c of R
- check whether $(v_1, v_3) \in R^c$

Example

- DAG structures:
 - G = (V, E) directed graph
 - Labelling on vertices
 - $\lambda(v)$: label of vertex v $\delta(v)$: outdegree of vertex v
 - Edges leaving the vertex v are ordered
 (v[i]: denotes i-th successor of v)

$$\lambda(v_1) = \lambda(v_2) = f$$
$$\lambda(v_3) = a, \lambda(v_4) = b$$
$$\delta(v_1) = \delta(v_2) = 2$$
$$\delta(v_3) = \delta(v_4) = 0$$
$$v_1[1] = v_2, v_2[2] = v_4$$

Congruence closure of a DAG/Relation

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$

The congruence closure of R is the smallest relation R^c on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u) = \lambda(v)$ and $\delta(u) = \delta(v)$ and for all $1 \le i \le \delta(u)$: $(u[i], v[i]) \in R^c$ then $(u, v) \in R^c$.

Congruence closure of a relation

Recursive definition

 $(u, v) \in R$ $(u, v) \in R^{c}$ $(u, w) \in R^{c}$ $(u, v) \in R^{c}$ $(u, v) \in R^{c}$ $(u, v) \in R^{c}$

• The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

• Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_i \approx t_i \wedge \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$ is satisfiable.

(1) Construct graph corresponding to the terms occurring in s_i , t_i , s'_j , t'_j Let v_t be the vertex corresponding to term t

(2) Let
$$R = \{(v_{s_i}, v_{t_i}) \mid i \in \{1, \ldots, n\}\}$$

(3) Compute R^c .

(4) Output "Sat" if $(v_{s'_j}, v_{t'_j}) \notin R^c$ for all $1 \le j \le m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)

$$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \not\approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$$

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$

Proof (\Rightarrow)

Assume \mathcal{A} is a Σ -structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_i \approx t_i \land \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$.

We can show that $[v_s]_{R^c} = [v_t]_{R^c}$ implies that $\mathcal{A} \models s = t$ (Exercise).

(We use the fact that if $[v_s]_{R^c} = [v_t]_{R^c}$ then there is a derivation for $(v_s, v_t) \in R^c$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \models s = t$.)

As
$$\mathcal{A} \models s'_j \not\approx t'_j$$
, it follows that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

$$\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s'_j \not\approx t'_j$$
 is satisfiable iff $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$.

Proof(\Leftarrow) Assume that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s'_j \not\approx t'_j$

• Universe is quotient of V w.r.t. R^c plus new element 0.

•
$$c \text{ constant} \mapsto c_{\mathcal{A}} = [v_c]_{R^c}$$
.
• $f/n \mapsto f_{\mathcal{A}}([v_1]_{R^c}, \dots, [v_n]_{R^c}) = \begin{cases} [v_{f(t_1,\dots,t_n)}]_{R^c} & \text{if } v_{f(t_1,\dots,t_n)} \in V, \\ [v_{t_i}]_{R^c} = [v_i]_{R^c} \text{ for } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$

well-defined because R^c is a congruence.

• It holds that $\mathcal{A} \models s'_j \not\approx t'_j$ and $\mathcal{A} \models s_i \approx t_i$

Given:
$$G = (V, E)$$
 DAG + labelling

 $R \subseteq V imes V$

Task: Compute R^c (the congruence closure of R)

Example:

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$

$$v_{1}$$

$$R = \{(v_{2}, v_{3})\}$$

$$v_{3}$$

$$k_{3}$$

$$k_{4}$$

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c ;

close relation under congruence.

Task: Compute R^c

Given: G = (V, E) DAG + labelling $R \subseteq V \times V$; $(v, v') \in V^2$ Task: Check whether $(v, v') \in R^c$

Example:

$f(a, b) \approx a \rightarrow f(f)$	(a, b), b) $pprox$ a
f	$R = \{(v_2, v_3)\}$
V_2	
v_3 (a) (b) v_2	, 4

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c ;

close relation under congruence.

Task: Decide whether $(v_1, v_3) \in \mathbb{R}^c$

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$
Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing $R_{i+1} :=$ congruence closure of $R_i \cup \{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing $R_{i+1} :=$ congruence closure of $R_i \cup \{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition:
 FIND(u): unique name of equivalence class of u
 UNION(u, v) combines equivalence classes of u, v
 finds repr. t_u, t_v of equiv.cl. of u, v; sets FIND(u) to t_v

MERGE(u, v)

Input: G = (V, E) DAG + labelling

R relation on V closed under congruence

u, v $\in V$

Output: the congruence closure of $R \cup \{(u, v)\}$

If FIND(u) = FIND(v) [same canonical representative] then Return If $FIND(u) \neq FIND(v)$ then [merge u, v; recursively-predecessors] $P_u :=$ set of all predecessors of vertices w with FIND(w) = FIND(u) $P_v :=$ set of all predecessors of vertices w with FIND(w) = FIND(v)Call UNION(u, v) [merge congruence classes] For all $(x, y) \in P_u \times P_v$ do: [merge congruent predecessors] if $FIND(x) \neq FIND(y)$ and CONGRUENT(x, y) then MERGE(x, y)

CONGRUENT(x, y)

if $\lambda(x) \neq \lambda(y)$ then Return FALSE For $1 \leq i \leq \delta(x)$ if FIND $(x[i]) \neq$ FIND(y[i]) then Return FALSE

Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

If x, y merged then $(x, y) \in (R \cup \{(u, v)\})^c$ (UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in (R \cup \{(u, v)\})^c$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup \{(u, v)\})^c$

(1) (x, y) ∈ R OK (they are merged)
(2) (x, y) ∉ R. The only non-trivial case is the following:
λ(x) = λ(y), x, y have n successors x_i, y_i where
(x_i, y_i) ∈ (R ∪ {(u, v)})^c for all 1 ≤ i ≤ b.
Induction hypothesis: (x_i, y_i) are merged at some point

(become equal during some call of UNION(a, b), made in some MERGE(a, b)) Successor of x equivalent to a (or b) before this call of UNION; same for y.

```
\Rightarrow MERGE must merge x and y
```

Computing the Congruence Closure

Let G = (V, E) graph and $R \subseteq V \times V$

CC(G, R) computes the R^c :

(1) $R_0 := \emptyset; i := 1$

(2) while R contains "fresh" elements do:

pick "fresh" element $(u, v) \in R$

 $R_i := MERGE(u, v)$ for G and R_{i-1} ; i := i + 1.

Complexity: $O(n^2)$

Downey-Sethi-Tarjan congruence closure algorithm: more sophisticated version of MERGE (complexity $O(n \cdot logn)$)

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

$$F = s_1 \approx t_1 \wedge \cdots \wedge s_n \approx t_n \wedge s'_1 \not\approx t'_1 \wedge \cdots \wedge s'_m \not\approx t'_m$$

Solution: Let S_F be the set of all subterms occurring in F

- 1. Construct the DAG for S_F ; $R_0 = Id$
- 2. [Build R_n the congruence closure of $\{(v(s_1), v(t_1)), ..., (v(s_n), v(t_n))\}$] For $i \in \{1, ..., n\}$ do $R_i := MERGE(v_{s_i}, v_{t_i})$ w.r.t. R_{i-1}
- 3. If $FIND(v_{s'_j}) = FIND(v_{t'_j})$ for some $j \in \{1, ..., m\}$ then return unsatisfiable
- 4. else [if FIND $(v_{s'_j}) \neq FIND(v_{t'_j})$ for all $j \in \{1, ..., m\}$] then return satisfiable

Example

$$f(a,b)pprox a
ightarrow f(f(a,b),b)pprox a$$

Test: unsatisfiability of $f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$

Task:

- Compute *R^c*
- Decide whether $(v_1, v_3) \in R^c$

Solution:

1. Construct DAG in the figure; $R_0 = Id$. 2. Compute $R_1 := MERGE((v_2, v_3))$ [Test representatives] $FIND(v_2) = v_2 \neq v_3 = FIND(v_3)$ $P_{v_2} := \{v_1\}; P_{v_3} := \{v_2\}$ [Merge congruence classes] UNION (v_2, v_3) : sets FIND (v_2) to v_3 . [Compute and recursively merge predecessors] Test: $FIND(v_1) = v_1 \neq v_3 = FIND(v_2)$ $CONGR(v_1, v_2)$ $MERGE(v_1, v_2)$: (different representatives) calls UNION(v_1, v_2) which sets FIND(v_1) to v_3 . 3. Test whether $FIND(v_1) = FIND(v_3)$. Yes.

3.4. Decision procedures for numeric domains

- Peano arithmetic
- Theory of real numbers
- Linear arithmetic
 - over \mathbb{N}/\mathbb{Z}
 - over \mathbb{R}/\mathbb{Q}

Decision procedures

- Light-weight fragments of linear arithmetic: Difference logic
- Full fragment $(LI(\mathbb{R}) \text{ or } LI(\mathbb{Q}))$

Peano arithmetic

Peano axioms:	$\forall x \neg (x + 1 \approx 0)$	(zero)
	orall x orall y (x+1 pprox y+1 ightarrow x pprox y	(successor)
	$F[0] \land (\forall x (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$	(induction)
	$\forall x (x + 0 \approx x)$	(plus zero)
	orall x, y (x + (y + 1) $pprox$ (x + y) + 1)	(plus successor)
	$\forall x, y (x * 0 pprox 0)$	(times 0)
	orall x, y (x st (y $+$ 1) $pprox$ x st y $+$ x)	(times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: $(\mathbb{N}, \{0, 1, +, *\}, \{<\})$ (also with \approx) (does not capture true arithmetic by Goedel's incompleteness theorem) Undecidable **Theory of integers**

•Th((
$$\mathbb{Z}, \{0, 1, +, *\}, \{<\})$$
)

Undecidable

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same properties as real numbers)

Axioms:

- the ordered field axioms;
- axiom asserting that every positive number has a square root; and
- an axiom scheme asserting that all polynomials of odd order have at least one real root.

Tarski (1951) proved that the theory of real closed fields, including the binary predicate symbols "=", " \neq ", and "<", and the operations of addition and multiplication, admits elimination of quantifiers, which implies that it is a complete and decidable theory.

Linear arithmetic

Syntax

- Signature $\Sigma = (\{0/0, s/1, +/2\}, \{</2\})$
- Terms, atomic formulae as usual

Example: $3 * x_1 + 2 * x_2 \le 5 * x_3$ abbreviation for

$$(x_1 + x_1 + x_1) + (x_2 + x_2) \le (x_3 + x_3 + x_3 + x_3 + x_3)$$

There are several ways to define linear arithmetic.

We need at least the following signature: $\Sigma = (\{0/0, 1/0, +/2\}, \{</2\})$ and the predefined binary predicate \approx .

There are several ways to define linear arithmetic.

We need at least the following signature: $\Sigma = (\{0/0, 1/0, +/2\}, \{</2\})$ and the predefined binary predicate \approx .

Linear arithmetic over \mathbb{N}/\mathbb{Z}

Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, <)$ the standard interpretation of integers. Axiomatization

Linear arithmetic over \mathbb{Q}/\mathbb{R}

Th(\mathbb{R}) $\mathbb{R} = (\mathbb{R}, \{0, 1, +\}, \{<\})$ the standard interpretation of reals;

Th(\mathbb{Q}) $\mathbb{Q} = (\mathbb{Q}, \{0, 1, +\}, \{<\})$ the standard interpretation of rationals. Axiomatization We first present an efficient method for checking the satisfiability of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking the satisfiability of arbitrary formulae in linear arithmetic.

Simple fragments of linear arithmetic

• Difference logic

check satisfiability of conjunctions of constraints of the form

$$x-y \leq c$$

• UTVPI (unit, two variables per identity)

check satisfiability of conjunctions of constraints of the form

 $ax + by \le c$, where $a, b \in \{-1, 0, 1\}$

Application: Program Verification

```
i := 1, n < m
while i < n
do
i := i + 1
  [** part of a program in which i is used as an index in an array
     which was declared to be of size s > m (and i is not changed)
     **]
   ....
od
```

Task: $i \leq s$ always during the execution of this program.

Application: Program Verification

Task: $i \leq s$ always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after every update of *i*.

Application: Program Verification

```
i := 1, n < m
while i < n
do
i := i + 1
  [** part of a program in which i is used as an index in an array
     which was declared to be of size s > m (and i is not changed)
     **]
   ....
od
```

Task: $i \leq s$ always during the execution of this program.

Solution: Show that $i \leq s$ is an invariant of the program:

1) It holds at the first line: $i = 1 \rightarrow i \leq s$

2) It is preserved under the updates in the while loop: $\forall n, m, s, i, i' \quad (n < m \land 1 < m < s \land i \leq n \land i \leq s \land i' \approx i + 1 \rightarrow i' \leq s)$

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

 $x-y \leq c$

where x, y are variables and c is a numerical constant.

• The set of formulae is:

F, G, H::=A(atomic formula)| $(F \land G)$ (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is $\mathbb Q$ or resp. $\mathbb Z.$

A decision procedure for positive difference logic (\leq only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. G(S) = (V, E, w), the inequality graph of S, is a weighted graph with:

- V = X(S), the set of variables occurring in S
- $e = (x, y) \in E$ with w(e) = c iff $x y \leq c \in S$

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot |E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Rightarrow) Assume *S* satisfiable. Let $\beta : X \to \mathbb{Z}$ satisfying assignment. Let $v_1 \stackrel{c_{12}}{\to} v_2 \stackrel{c_{23}}{\to} \cdots \stackrel{c_{n-1,n}}{\to} v_n \stackrel{c_{n1}}{\to} v_1$ be a cycle in G(S).

Then:
$$\beta(v_1) - \beta(v_2) \leq c_{12}$$

 $\beta(v_2) - \beta(v_3) \leq c_{23}$
...
 $g \quad \frac{\beta(v_n) - \beta(v_1)}{\beta(v_1) - \beta(v_1)} \leq c_{n1}$
 $0 = \quad \beta(v_1) - \beta(v_1) \leq \sum_{i=1}^{n-1} c_{i,i+1} + c_{n1}$

Thus, for satisfiability it is necessary that all cycles are positive.

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Leftarrow) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s. (This does not introduce negative cycles.)

Let δ_{uv} denote the minimal weight of the paths from u to v.

- $\delta_{uv} = \infty$ if there is no path from *u* to *v*.
- well-defined since there are no negative cycles

Define $\beta: V \to \mathbb{Z}$ by $\beta(v) = \delta_{vs}$. Claim: β satisfying assignment for S.

Let $x - y \le c \in S$. Consider the shortest paths from x to s and from y to s. By the triangle inequality, $\delta_{xs} \le c + \delta_{ys}$, i.e. $\beta(x) - \beta(y) \le c$.