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Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)
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Signature

A signature Σ = (Ω,Π), fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0, written p/m.

A many-sorted signature Σ = (S , Ω, Π), fixes an alphabet of non-logical

symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f ) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.
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Variables

We assume that X is a given countably infinite set of symbols which we use

for (the denotation of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.
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Terms, Atoms, Formulae

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f ) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.
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Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

Equality: Several possibilities

• ≈s for every sort s
• t ≈ t′ well-formed iff t and t′ are terms of the same sort
• No restrictions (restrictions only on the semantic level)

6



General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)
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Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P,Q,R, S , ...

predicate symbols with arity ≥ 1 are denoted

• p, q, r , ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...
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Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.
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Bound and Free Variables

Example:

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) → q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.
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Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X )

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).
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Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X )

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

Many-sorted case: Substitutions must be sort-preserving:

If x is a variable of sort s, then σ(x) must be a term of sort s.
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Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =







si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =







t, if y = x

σ(y), otherwise
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Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not

captured upon placing them into the scope of a quantifier Qy , hence the

bound variable must be renamed into a “fresh”, that is, previously unused,

variable z.
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Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(Qx F )σ = Qz (F [x 7→ z]σ) ; with z a fresh variable
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2.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.
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Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.
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Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure),

where Σ = (S , Ω,Π) is a triple

A=({Us}s∈S , (fA:Us1×. . .×Usn→Us ) f∈Ω,
a(f )=s1...sn→s

(pA:Us1× . . .×Usm→{0, 1}) p∈Π
a(p)=s1...sm

)

where Us 6= ∅ is a set, called the universe of A of sort s.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.
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Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

Many-sorted case:

β = {βs}s∈S ,βs : Xs → Us
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Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X ) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω
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Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=







a if x = y

β(y) otherwise
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Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X ) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F ) = 1 ⇔ A(β)(F ) = 0

A(β)(FρG) = Bρ(A(β)(F ),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF ) = min
a∈U

{A(β[x 7→ a])(F )}

A(β)(∃xF ) = max
a∈U

{A(β[x 7→ a])(F )}
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Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.
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Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1
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2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F ) = 1

F is valid in A (A is a model of F ):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A, β |= F .

Otherwise F is called unsatisfiable.
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Substitution Lemma

The following propositions, to be proved by structural induction, hold for

all Σ-algebras A, assignments β, and substitutions σ.

Lemma 2.3:

For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 2.4:

For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F ).
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Substitution Lemma

Corollary 2.5:

A,β |= Fσ ⇔ A,β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution

corresponds to the semantic concept of an assignment.
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .
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Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A, β |= F .
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?
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Theory of a Structure

Let A ∈ Σ-alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X ) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write

down a formula F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.
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Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s, +) its standard

interpretation on the integers.

Th(Z+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of Z, considers the

natural numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,

16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic

methods (and there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22
cn
)).
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Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of ΣPA =

({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called Peano arithmetic

which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the

computational complexity of theories.
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Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory ofM: Th(M) = {G ∈ FΣ(X ) closed | M |= G}
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Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X ) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F
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Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X ) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

Note: F ⊆ Th(Mod(F)) (typically strict)

M ⊆ Mod(Th(M)) (typically strict)
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Examples

1. Groups

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Every group G = (G , eG , ∗G , iG ) is a model of F

Mod(F) is the class of all groups

F ⊂ Th(Mod(F))

38



Examples

2. Linear (positive)integer arithmetic

Let Σ = ({0/0, s/1,+/2}, {≤ /2})

Let Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

3. Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.
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Examples

4. Lists

Let Σ = ({car/1, cdr/1, cons/2}, ∅)

Let F be the following set of list axioms:

car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F) class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)
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2.4 Algorithmic Problems

Validity(F ): |= F ?

Satisfiability(F ): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F ): A |= F?

Solve(A,F ): find an assignment β such that A,β |= F

Solve(F ): find a substitution σ such that |= Fσ

Abduce(F ): find G with “certain properties” such that G

entails F
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Decidability/Undecidability

In 1931, Gödel published his incompleteness theorems in

“Über formal unentscheidbare Sätze der

Principia Mathematica und verwandter Systeme”

(in English “On Formally Undecidable Propositions of

Principia Mathematica and Related Systems”).

He proved for any computable axiomatic system that is powerful

enough to describe the arithmetic of the natural numbers (e.g. the

Peano axioms or Zermelo-Fraenkel set theory with the axiom of

choice), that:

• If the system is consistent, it cannot be complete.

• The consistency of the axioms cannot be proven within the

system.

42



Decidability/Undecidability

These theorems ended a half-century of attempts, beginning with the

work of Frege and culminating in Principia Mathematica and Hilbert’s

formalism, to find a set of axioms sufficient for all mathematics.

The incompleteness theorems also imply that not all mathematical

questions are computable.
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Consequences of Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(We will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

These undecidability results motivate the study of subclasses of

formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which

validity is decidable?
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Some Decidable Fragments/Problems

Validity/Satisfiability/Entailment: Some decidable fragments:

• Variable-free formulas without equality:

satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Q: Other decidable fragments of FOL (with variables)?

Which methods for proving decidability?

Decidable problems.

Finite model checking is decidable in time polynomial in the size of

the structure and the formula.
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Goals

Identify:

• decidable fragments of first-order logic

• fragments of FOL for which satisfiability checking is easy

Methods:

• Theoretical methods (automata theory, finite model property)

• Adjust automated reasoning techniques

(e.g. to obtaining efficient decision procedures)

Extend methods for automated reasoning in propositional logic?

Instantiation/reduction to propositional logic

Extend the resolution calculus for first-order logic
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Goals

Extend methods for automated reasoning in propositional logic?

Instantiation/reduction to propositional logic

Extend the resolution calculus for first-order logic

Ingredients:

- Give a method for translating formulae to clause form

- Regard formulae with variables as a set of all their instances

(where variables are instantiated with ground terms)

- Show that only certain instances are needed

7→ reduction to propositional logic

- Finite encoding of infinitely many inferences

7→ resolution for first-order logic
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2.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The

subsequent normal form transformations are intended to eliminate many of

them.
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of

the formula.
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Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G ) ⇒P (F → G ) ∧ (G → F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G ) ⇒P Qy(F [y/x ] ρ G ), y fresh, ρ ∈ {∧,∨}

(QxF → G ) ⇒P Qy(F [y/x ] → G ), y fresh

(F ρ QxG ) ⇒P Qy(F ρ G [y/x ]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.
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Example

F := (∀x((p(x)∨ q(x , y))∧∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))
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Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′ ((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))
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Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))
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Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ (((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))
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Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))
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Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))

⇒P ∃x′∀z′∀z′′(((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ r(z′′, x , y)))
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Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).
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Skolemization

Together: F
∗

⇒P G
︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 2.9:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-alg) ⇔ H satisfiable (wrt. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).
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Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F )

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity

of ∧ and ∨. The first five rules, plus the rule (¬Q), compute the

negation normal form (NNF) of a formula.
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The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)
∗

⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10:

Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 2.11:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is satisfiable
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Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y(q(w , x , y) ∧ ∃z r(y , z))))
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Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))
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Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))
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Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))

Clause normal form:

∗
⇒K ∀w∀y [(p(w , skx (w), sku)∨q(w , skx (w), y))∧(p(w , skx (w), sku)∨r(y , g(w , y)))]

Set of clauses:

{p(w , skx (w), sku)∨q(w , skx (w), y), p(w , skx (w), sku)∨r(y , g(w , y))}
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Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions.
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