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Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution

Normal Forms and Skolemization
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2.6 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall

contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △
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Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.
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Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

5



Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set

of ground instances of N.

(Proof – completeness proof of resolution for first-order logic.)
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Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .
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Consequences of Herbrans’s theorem

Decidability results.

• Formulae without function symbols and without equality

The Bernays-Schönfinkel Class ∃∗∀∗
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The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)
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The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒P ∃x1 . . . ∃xn∀y1 . . . ∀ynF (x1, . . . , xn, y1, . . . , yn)

⇒S ∀y1 . . . ∀ymF (c1, . . . , cn, y1, . . . , yn)

⇒K ∀y1 . . . ∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

10



The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒∗
K ∀y1 . . . ∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

The Herbrand Universe is finite 7→ decidability
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Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)
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Variable-free Horn clauses
Data structures

Atoms P1, . . . ,Pn 7→ {1, . . . , n}

neg-occ-list(A): list of all clauses in which A occurs negatively

pos-occ-list(A): list of all clauses in which A occurs positively

Clause: P1 P2 . . . Pn counter

neg neg pos ↑

↑ number of literals

first-active-literal (fal): first literal not marked as deleted.

atom status: pos (deduced as positive unit clause)

neg (deduced as negative unit clause)

nounit (otherwise)
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Variable-free Horn clauses

Input: Set N of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist

forall C ∈ N do

if is-unit(C) then begin const. time

L := first-active-literal(C) const. time

if state(atom(L)) = nounit then state(atom(L)) = sign(L) const. time

push(atom(L), stack)

else if state(atom(L)) 6= sign(L) then return false
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Variable-free Horn clauses
2. Process the unit clauses in the stack

while stack 6= ∅ do

begin A := top(stack); pop(stack)

if state(A) = pos then delete-literal-list := neg-oc-list(A) O(# neg-oc-list)

else delete-literal-list := pos-oc-list(A) O(# pos-oc-list)

endif

for all C in delete-literal-list do

if state(A) = pos then delete-literal(A,C) const. time + nfal - ofal

if state(A) = neg then delete-literal(¬ A,C) const. time + nfal - ofal

if unit(C) then L1 := first-active-literal(C) const. time

if state(atom(L1)) = nounit then state(atom(L1)) = sign(L1),

L1 → stack

elseif state(atom(L1)) 6= sign(L1) then return false

endif

end
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Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

• Similar fragment of the Bernays-Schönfinkel class?
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Motivation: Deductive Databases

Deductive database

Inference rules:

Facts:

Query:
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c),R(d)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

F |=K G iff K ∪ F |= G iff K ∪ F ∪ ¬G |=⊥

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)
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Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

Ex:

S(a) S(x) → R(x)

R(a) E(a, c) R(x) ∧ E(x , y) → R(y)

R(c) E(c, d) R(x) ∧ E(x , y) → R(y)

R(d)
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Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity ≥ 1.

Given:

• Set H of (function-free) Horn clauses

• Ground Horn clause G =
∧

Ai → A.

The following are equivalent:

(1) H |=
∧

Ai → A

(2) H ∧
∧

Ai |= A

(3) H ∧
∧

Ai ∧ ¬A |=⊥

Decidable in PTIME in the size of G for a fixed H.
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Generalization: Local theories

[McAllester,Givan’92], [Basin,Ganzinger’96,01], [Ganzinger’01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause

C the following are equivalent:

(1) H |= C

(2) H[C ] |= C ,

where H[C ] is the family of all instances of H in which the variables are

replaced by ground subterms occurring in H or C .

Theorem. For a fixed local theory H, testing ground entailment w.r.t. H is

in PTIME.

Will be discussed in more detail in the exercises
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2.7 General Resolution

Propositional resolution:

refutationally complete,

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.
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Propositional resolution: reminder

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A
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Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

Res is sound and refutationally complete (for all sets of ground

clauses)
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Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Resolution Calculus Res
≻
S

Ordered resolution with selection

C ∨ A D ∨ ¬A

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .
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Resolution for ground clauses

Let ≻ be a total and well-founded ordering on ground atoms, and S

a selection function.

Theorem. Res≻S is sound and refutationally complete for all sets of

ground clauses.

Soundness: sufficient to show that

(1) C ∨ A,D ∨ ¬A |= C ∨ D

(2) C ∨ A ∨ A |= C ∨ A

Completeness: Let ≻ be a clause ordering, let N be saturated

wrt. Res≻S , and suppose that ⊥ 6∈ N. Then I≻N |= N, where I≻N is

incrementally constructed as follows:

32



Construction of Candidate Models Formally

Let N,≻ be given.

• Order N increasing w.r.t. the extension of ≻ to clauses.

• Define sets IC and ∆C for all ground clauses C over the given

signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=







{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

and nothing is selected in C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C ∆C .

(We write IN for I≻N if ≻ is irrelevant or known from the context.)
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Completeness

Theorem. Let ≻ be a clause ordering, let N be saturated wrt. Res≻
S
, and

suppose that ⊥ 6∈ N. Then I≻
N

|= N.

Proof: Suppose ⊥ 6∈ N, but I≻
N

6|= N. Let C ∈ N minimal (in ≻) such that

I≻
N

6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there exists

a maximal atom A in C .

1. C = ¬A ∨ C ′ (maximal atom occurs negatively) ⇒ IN |=A, IN 6 |=C ′

Then some D = D′ ∨ A ∈ N produces A. As D′
∨A ¬A∨C′

D′∨C′ , we

infer that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

2. C = ¬A ∨ C ′ (¬A is selected) ⇒ IN |=A, IN 6 |=C ′

The argument in 1. applies also in this case.

3. C = C ′ ∨ A ∨ A. Then C′
∨A∨A

C′∨A
yields a smaller counterexample

C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .
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General Resolution through Instantiation

Idea: instantiate clauses appropriately:
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General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary literals.

36



General Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y ] [b/y ] [a/x ′]

[f (a, x)/z]
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Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general

atoms;

• Only compute most general (minimal) unifiers.
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Lifting Principle

Significance: The advantage of the method in (Robinson 65) compared

with (Gilmore 60) is that unification enumerates only those instances of

clauses that participate in an inference. Moreover, clauses are not right

away instantiated into ground clauses. Rather they are instantiated

only as far as required for an inference. Inferences with non-ground

clauses in general represent infinite sets of ground inferences which are

computed simultaneously in a single step.
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Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.
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Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E if siσ = tiσ for

all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.
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Unification after Martelli/Montanari

(1) t
.
= t,E ⇒MM E

(2) f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

(3) f (. . .)
.
= g(. . .),E ⇒MM ⊥

(4) x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

(5) x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

(6) t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X
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Examples

Example 1:

{x
.
= f (a), g(x , x)

.
= g(x , y)} ⇒4

{x
.
= f (a), g(f (a), f (a))

.
= g(f (a), y)} ⇒2

{x
.
= f (a), f (a)

.
= f (a), f (a)

.
= y} ⇒1

{x
.
= f (a), f (a)

.
= y} ⇒6

{x
.
= f (a), y

.
= f (a)}

Example 2:

{x
.
= f (a), g(x , x)

.
= h(x , y)} ⇒3⊥

Example 3:

{f (x , x)
.
= f (y , g(y))} ⇒2

{x
.
= y , x

.
= g(y)} ⇒4

{x
.
= y , y

.
= g(y)} ⇒5⊥
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MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj ), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk ].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .
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MM: Main Properties

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the

case for the 4th rule here. Suppose σ is a unifier of x
.
= t, that

is, xσ = tσ. Thus, σ ◦ [t/x ] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ.

Therefore, for any equation u
.
= v in E : uσ = vσ, iff

u[t/x ]σ = v [t/x ]σ. (2) and (3) follow by induction from (1)

using Proposition 2.28.
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Main Unification Theorem

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E ).

Proof: See e.g. Baader & Nipkow: Term rewriting and all that.

Problem: exponential growth of terms possible

Example:

E = {x1 ≈ f (x0, x0), x2 ≈ f (x1, x1), . . . , xn ≈ f (xn−1, xn−1)}

m.g.u. [x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), ...]

xi 7→ complete binart tree of heigth i

Solution: Use acyclic term graphs; union/find algorithms
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Lifting Lemma

Lemma 2.31

Let C and D be variable-disjoint clauses. If

C

σ

��

D

ρ

��

Cσ Dρ

C ′ [propositional resolution]

then there exists a substitution τ such that

C D

C ′′

ρ

��

C ′ = C ′′
τ

[general resolution]

47



Lifting Lemma

An analogous lifting lemma holds for factorization.
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Saturation of Sets of General Clauses

Corollary 2.32:

Let N be a set of general clauses saturated under Res, i.e.,

Res(N) ⊆ N. Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).
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Saturation of Sets of General Clauses

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-

disjoint. (Otherwise make them disjoint, and this renaming process

changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground

instances Cσ and Dρ of N with resolvent C ′, or else (ii) C ′ is a

factor of a ground instance Cσ of C .

Case (i): By the Lifting Lemma, C and D are resolvable with a

resolvent C ′′ with C ′′
τ = C ′, for a suitable substitution τ . As

C ′′ ∈ N by assumption, we obtain that C ′ ∈ GΣ(N).

Case (ii): Similar.
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Herbrand’s Theorem

Lemma 2.33:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.34:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.
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Herbrand’s Theorem

Theorem 2.35 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res
∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res
∗(N))

⇒ IGΣ(Res
∗(N)) |= GΣ(Res

∗(N)) (Thm. 2.23; Cor. 2.32)

⇒ IGΣ(Res
∗(N)) |= Res

∗(N) (Lemma 2.34)

⇒ IGΣ(Res
∗(N)) |= N (N ⊆ Res

∗(N))
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The Theorem of Löwenheim-Skolem

Theorem 2.36 (Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed Σ-formulas.

Then S is satisfiable iff S has a model over a countable universe.

Proof:

If both X and Σ are countable, then S can be at most countably

infinite. Now generate, maintaining satisfiability, a set N of clauses

from S . This extends Σ by at most countably many new Skolem

functions to Σ′. As Σ′ is countable, so is TΣ′ , the universe of

Herbrand-interpretations over Σ′. Now apply Theorem 2.35.
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Refutational Completeness of General Resolution

Theorem 2.37:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.32: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.33/2.34; Theorem 2.35)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N
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Compactness of Predicate Logic

Theorem 2.38 (Compactness Theorem for First-Order Logic):

Let Φ be a set of first-order formulas.

Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof:

The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable

and let N be the set of clauses obtained by Skolemization and CNF

transformation of the formulas in Φ. Clearly Res∗(N) is unsatisfiable.

By Theorem 2.37, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for

some n ∈ N. Consequently, ⊥ has a finite resolution proof B of

depth ≤ n. Choose Ψ as the subset of formulas in Φ such that the

corresponding clauses contain the assumptions (leaves) of B.
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2.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 2.23) one

only needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection
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Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Resolution Calculus Res
≻
S

In the completeness proof, we talk about (strictly) maximal literals of

ground clauses.

In the non-ground calculus, we have to consider those literals that

correspond to (strictly) maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only if there

exists a ground substitution σ such that for all L′ in C : Lσ � L′
σ

[Lσ ≻ L′
σ].
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Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal in

Dσ.
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Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is selected

in C .
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Soundness and Refutational Completeness

Theorem 2.39:

Let ≻ be an atom ordering and S a selection function such that

Res≻S (N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider first the

propositional level: Construct a candidate model IN as for unrestricted

resolution, except that clauses C in N that have selected literals

are not productive, even when they are false in IC and when their

maximal atom occurs only once and positively.

The result for general clauses follows using Corollary 2.40.
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Craig Interpolation

A theoretical application of ordered resolution is Craig- Interpolation:

Theorem 2.42 (Craig 57)

Let F and G be two propositional formulas such that F |= G .

Then there exists a formula H (called the interpolant for F |= G),

such that H contains only propostional variables occurring both in F

and in G , and such that F |= H and H |= G .
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Craig Interpolation

Proof:

Translate F and ¬G into CNF.

Let N and M, resp., denote the resulting clause set.

Choose an atom ordering ≻ for which the propositional variables that occur in F but

not in G are maximal.

Saturate N into N∗ wrt. Res≻
S

with an empty selection function S.

Then saturate N∗ ∪ M wrt. Res≻S to derive ⊥.

As N∗ is already saturated, due to the ordering restrictions only inferences need to be

considered where premises, if they are from N∗, only contain symbols that also occur

in G .

The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas. For universal formulas the above proof

can be easily extended. In the general case, a proof based on resolution technology is

more complicated because of Skolemization.
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Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed by

other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.
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A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C are

redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples

nor productive.

Note: The same ordering ≻ is used for ordering restrictions and for

redundancy (and for the completeness proof).
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Examples of Redundancy

Proposition 2.40:

• C tautology (i.e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}

(Under certain conditions one may also use non-strict subsumption,

but this requires a slightly more complicated definition of redundancy.)
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Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res≻S )

:⇔ Res≻S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.41:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N
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Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate model I≻N for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻N

The premises of “essential” inferences are either minimal counterex-

amples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.39.
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Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof: Exercise.

We conclude that redundancy is preserved when, during a theorem

proving process, one adds (derives) new clauses or deletes redundant

clauses.
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