
Decision Procedures in Verification

First-Order Logic (4)

28.11.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution

Normal Forms and Skolemization

Herbrand interpretations

The Bernays-Schönfinkel Class

(definition; decidability;tractable fragment: Horn clauses)

2

Until now:

General Resolution

Soundness, refutational completeness

Refinements: Ordered resolution with selection

Consequences:

Herbrand’s theorem

The Theorem of Löwenheim-Skolem

Compactness of first-order logic

3

Consequences

Theorem 2.35 (Herbrand’s theorem):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand model

over Σ.

Theorem 2.36 (The theorem of Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed Σ-formulas.

Then S is satisfiable iff S has a model over a countable universe.

Theorem 2.38 (Compactness Theorem for First-Order Logic):

Let Φ be a set of first-order formulas.

Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

4

Craig Interpolation

A theoretical application of ordered resolution is Craig Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that F |= G .

Then there exists a formula H (called the interpolant for F |= G),

such that H contains only propostional variables occurring both in F

and in G , and such that F |= H and H |= G .

5

Craig Interpolation

Proof:

Translate F and ¬G into CNF.

Let N and M, resp., denote the resulting clause set.

Choose an atom ordering ≻ for which the propositional variables that occur in F but

not in G are maximal.

Saturate N into N∗ wrt. Res≻
S

with an empty selection function S.

Then saturate N∗ ∪ M wrt. Res≻S to derive ⊥.

As N∗ is already saturated, due to the ordering restrictions only inferences need to be

considered where premises, if they are from N∗, only contain symbols that also occur

in G .

The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas. For universal formulas the above proof

can be easily extended. In the general case, a proof based on resolution technology is

more complicated because of Skolemization.

6

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Task: Is the union of the two databases consistent? If not: locate error

7

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

8

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

F1 |= ¬F2 (assume we are in prop. logic)

9

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

F1 |= ¬F2 (assume we are in prop. logic)

Craig Interpolation (propositional case)

There exists I containing only propositional variables occurring

in F1 and F2 such that:

F1 |= I and I |= ¬F2

10

Applications of Craig Interpolation

Reasoning in combinations of theories

Given: Two theories (different but possibly overlapping languages)

s.t. decision procedures for component theories for certain fragments exist

Task: Reason in the combination of the two theories

Question: Which information needs to be exchanged between provers?

Answer: Craig Interpolation

The case of two disjoint theories will be discussed later in this lecture

11

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

φI ∧ T1 ∧ T2 ∧ · · · ∧ Tk ∧ φE

12

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

(φI ∧ T1)
︸ ︷︷ ︸

F1

∧ (T2 ∧ · · · ∧ Tk ∧ φE)
︸ ︷︷ ︸

F2

Not reachable: F1 ∧ F2 |=⊥

13

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

(φI ∧ T1)
︸ ︷︷ ︸

F1

∧ (T2 ∧ · · · ∧ Tk ∧ φE)
︸ ︷︷ ︸

F2

Not reachable: F1 ∧ F2 |=⊥

Interpolant: I overapproximates the set of successors of φI .

14

Goal

Goal: Make resolution efficient

Identify clauses which are not needed and can be discarded

15

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed by

other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

16

Recall

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.

17

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C are

redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples

nor productive.

Note: The same ordering ≻ is used for ordering restrictions and for

redundancy (and for the completeness proof).

18

Examples of Redundancy

Proposition 2.40:

• C tautology (i.e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}

(Under certain conditions one may also use non-strict subsumption,

but this requires a slightly more complicated definition of redundancy.)

19

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res≻S)

:⇔ Res
≻
S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.41:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

20

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate model I≻N for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻N

The premises of “essential” inferences are either minimal counterex-

amples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.39.

21

Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof:

(i) Let C ∈ Red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such

that Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

We assumed that N ⊆ M, so we know that C1, . . . ,Cn ∈ M.

Thus: there exist C1, . . . ,Cn ∈ M, n ≥ 0 such that Ci ≺ C for all

i = 1, . . . , n and C1, . . . ,Cn |= C . Therefore, C ∈ Red(M).

22

Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof (Idea):

(ii) Let C ∈ Red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such that

Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

Case 1: For all i , Ci 6∈ M. Then C ∈ Red(N\M).

Case 2: For some i , Ci ∈ M ⊆ Red(N). Then for every such index i there

exist C i
1, . . . ,C

i
ni

∈ N such that C i
j ≺ Ci and C i

1, . . . ,C
i
ni

|= Ci . We can

replace Ci above with C i
1, . . . ,C

i
ni
. We can iterate the procedure until

none of the Ci ’s are in M (termination guaranteed by the fact that ≻ is

well-founded).

23

Some theorem provers for first-order logic

• SPASS http://www.spass-prover.org/

• E http://www4.informatik.tu-muenchen.de/∼schulz/E/E.html

• Vampire http://www.vprover.org/

Example (SPASS)

24

Decidable subclasses of first-order logic

25

Applications

Use ordered resolution with selection to give a decision procedure

for the Ackermann class.

26

The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒S ∀xF (c1, . . . , cn, x , f1(x), . . . , fm(x))

⇒K ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

c1, . . . , cn are Skolem constants

f1, . . . , fm are unary Skolem functions

27

The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒∗ ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

The clauses are in the following classes:

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

28

The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 1: G ∪ V ∪ Gf ∪ Vf finite set of clauses (up to renaming of

variables).

29

The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, fi) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 2: No clauses with nested function symbols can be generated.

30

The Ackermann Class

Conclusion:

Resolution (with implicit factorization) will always terminate if the input

clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of

formulae in the Ackermann class.

31

The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely

relational signatures Σ = (Ω,Π), where Ω = ∅, and every p ∈ Π has arity 1.

Abstract syntax:

Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | ∀xΦ

Idea. Let Φ be a MFO formula with k predicate symbols.

Let A = (UA, {pA}p∈Π) be a Σ-algebra. The only way to distinguish the

elements of UA is by the atomic formulae p(x), p ∈ Π.

• the elements which a ∈ UA which belong to the same pA’s, p ∈ Π

can be collapsed into one single element.

• if Π = {p1, . . . , pk} then what remains is a finite structure with at

most 2k elements.

• the truth value of a formula: computed by evaluating all subformulae.

32

The Monadic Class

MFO Abstract syntax: Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | ∀xΦ

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO

formula with k predicate symbols then Φ has a model where the domain is

a subset of {0, 1}k .

Proof: Let B = ({0, 1}k , {p1
B, . . . , pk

B}), where pi
B={(b1, . . . , bk) | bi=1}.

Let A = (UA, {p1
A, . . . , pk

A}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk) where bi = 1 if a ∈ p
i
A and 0 otherwise.

Then a ∈ pi
A iff h(a) ∈ pi

B for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B ∩ h(UA), . . . , pk

B ∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

33

The Monadic Class

Let B = ({0, 1}k , {p1
B, . . . , pk

B}), where pi
B={(b1, . . . , bk) | bi=1}.

Let A = (UA, {p1
A, . . . , pk

A}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk) where bi = 1 if a ∈ p
i
A and 0 otherwise.

Then a ∈ pi
A iff h(a) ∈ pi

B for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B ∩ h(UA), . . . , pk

B ∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = ⊤ OK

• Φ = pi (x). Then (A,β) |= Φ iff β(x) ∈ pi
A iff h(β(x)) ∈ pi

B iff

(B′, β ◦ h) |= Φ.

34

The Monadic Class

Let B = ({0, 1}k , {p1
B, . . . , pk

B}), where pi
B={(b1, . . . , bk) | bi=1}.

Let A = (UA, {p1
A, . . . , pk

A}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk) where bi = 1 if a ∈ p
i
A and 0 otherwise.

Then a ∈ pi
A iff h(a) ∈ pi

B for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B ∩ h(UA), . . . , pk

B ∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = Φ1 ∧ Φ2: standard

• Φ = ¬Φ1: standard

35

The Monadic Class

Let B = ({0, 1}k , {p1
B, . . . , pk

B}), where pi
B={(b1, . . . , bk) | bi=1}.

Let A = (UA, {p1
A, . . . , pk

A}), β : X → UA be such that (A,β) |= Φ.

We construct a model for Φ with cardinality at most 2k as follows:

• Let h : A → B be defined for all a ∈ UA by:

h(a) = (b1, . . . , bk) where bi = 1 if a ∈ p
i
A and 0 otherwise.

Then a ∈ pi
A iff h(a) ∈ pi

B for all a ∈ UA and all i = 1, . . . , k.

• Let B′ = ({0, 1}k ∩ h(UA), {p1
B ∩ h(UA), . . . , pk

B ∩ h(UA)}).

• We show that (B′, β ◦ h) |= Φ.

Induction on the structure of Φ

• Φ = ∀xΦ1(x). Then the following are equivalent:

– (A,β)|=Φ (i.e. (A,β[x 7→ a])|=Φ1 for all a ∈ UA)

– (B′, β[x 7→ a] ◦ h)|=Φ1 for all a∈UA (ind. hyp)

– (B′, β ◦ h[x 7→ b])|=Φ1 for all b∈{0, 1}k ∩ h(A) (i.e. (B′, β◦h)|=Φ)

36

The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several

other classes):

William H. Joyner Jr.

Resolution Strategies as Decision Procedures.

J. ACM 23(3): 398-417 (1976)

Idea:

• Use orderings to restrict the possible inferences

• Identify a class of clauses (with terms of bounded depth) which

contains the type of clauses generated from the respective fragment

and is closed under ordered resolution (+ red. elim. criteria)

• Show that a saturation of the clauses can be obtained in finite time

37

The Monadic Class

Resolution-based decision procedure for the Monadic Class:

Φ : ∀x1∃y1 . . . ∀xk∃yk (....p
s(xi)......p

l (yi)...)

7→ ∀x1 . . . ∀xk (...p
s(xi)...p

l (fsk(x1, . . . , x i)...)

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears

- each variable-disjoint partition has at most n =
∑

i=1 |x i |

variables (can order the variables as x1, . . . , xn)

- the variables of each non-ground block can occur either in

atoms p(xi) or in atoms P(fsk(x1, . . . , xt)), 0 ≤ t ≤ n

It can be shown that this class contains all CNF’s of formulae in the

monadic class and is closed under ordered resolution.

38

