Decision Procedures in Verification

First-Order Logic (4)

238.11.2013

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)
Semantics
Structures (also many-sorted)
Models, Validity, and Satisfiability
Entailment and Equivalence
Theories (Syntactic vs. Semantics view)
Algorithmic Problems
Decidability /Undecidability
Methods: Resolution
Normal Forms and Skolemization
Herbrand interpretations

The Bernays-Schonfinkel Class
(definition; decidability;tractable fragment: Horn clauses)

Until now:

General Resolution
Soundness, refutational completeness
Refinements: Ordered resolution with selection
Consequences:
Herbrand’s theorem
The Theorem of Lowenheim-Skolem

Compactness of first-order logic

Consequences

Theorem 2.35 (Herbrand’s theorem):
A set N of 2 -clauses is satisfiable if and only if it has a Herbrand model
over X.

Theorem 2.36 (The theorem of Lowenheim—Skolem):
Let > be a countable signature and let S be a set of closed 2 -formulas.
Then S is satisfiable iff S has a model over a countable universe.

Theorem 2.38 (Compactness Theorem for First-Order Logic):
Let ® be a set of first-order formulas.
® is unsatisfiable << some finite subset W C & is unsatisfiable.

Craig Interpolation

A theoretical application of ordered resolution is Craig Interpolation:

Theorem (Craig 57)
Let F and G be two propositional formulas such that F = G.

Then there exists a formula H (called the interpolant for F = G),
such that H contains only propostional variables occurring both in F
and in G, and such that F = H and H = G.

Craig Interpolation

Proof:
Translate F and =G into CNF.
Let N and M, resp., denote the resulting clause set.

Choose an atom ordering > for which the propositional variables that occur in F but
not in G are maximal.

Saturate N into N* wrt. Res? with an empty selection function S.
Then saturate N* U M wrt. Res>s to derive L.

As N* is already saturated, due to the ordering restrictions only inferences need to be
considered where premises, if they are from N™, only contain symbols that also occur

in G.
The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas. For universal formulas the above proof
can be easily extended. In the general case, a proof based on resolution technology is
more complicated because of Skolemization.

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Task: Is the union of the two databases consistent? If not: locate error

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: F1 A F>
Task: Is the union of the two databases consistent? If not: locate error

Fi N\ F> |:J_

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: F1 A F>

Task: Is the union of the two databases consistent? If not: locate error
FinF, =L

Fi =P (assume we are in prop. logic)

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: F1 A F>

Task: Is the union of the two databases consistent? If not: locate error
FinF, =L
Fi = —F (assume we are in prop. logic)

Craig Interpolation (propositional case)

There exists | containing only propositional variables occurring
in F1 and F> such that:

F1 |: | and |/ |: ﬂFQ

10

Applications of Craig Interpolation

Reasoning in combinations of theories

Given: Two theories (different but possibly overlapping languages)
s.t. decision procedures for component theories for certain fragments exist

Task: Reason in the combination of the two theories

Question: Which information needs to be exchanged between provers?

Answer: Craig Interpolation

The case of two disjoint theories will be discussed later in this lecture

11

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.
- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:
Can a state in a certain set of states E (error)
be reached from some state in a set / (initial) in k steps?

O NTLNToN---NT \OE

12

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.
- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set / (initial) in k steps?

(P AN TO)N(T2 A~ AN Tg N @g) Not reachable: F1 A Fo =L

~~ ~~

F1 F>

13

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.
- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:
Can a state in a certain set of states E (error)
be reached from some state in a set / (initial) in k steps?

() AN TL)AN(T2 A~ ATy A GE) Not reachable: F1 A Fo =L

F1 F>
Interpolant: | overapproximates the set of successors of ¢;.

14

Goal

Goal: Make resolution efficient

|dentify clauses which are not needed and can be discarded

15

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?
Under which circumstances are clauses unnecessary?
(Conjecture: e.g., if they are tautologies or if they are subsumed by

other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

16

Recall

Construction of | for the extended clause set:

clauses C Ic Ac Remarks

1 =Py 0]

2 Po VvV Py 0 {Pl}

3 PV P (P} 0

4 —P1V P> {P1} {P>}

9 -P1 V=PV P3V P {P1, P>} {P3}

3 -P1V-Pi1V P33V P33V P {Pl, P>, P3} fj true In .AC
5 —P1 VP,V P3V Py {P]_,P2,P3})

6 =Py VvV —=PysV P3 | {P1, P>, P3} 0 true in Ac
7 —P3 V Ps {P]_,P2,P3} {P5}

The resulting I = {P1, P>, P3, P5} is a model of the clause set.

17

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not
necessarily in N). C is called redundant w.r.t. N, if there exist
Ci,...,Ch, €N, n>0, such that GG < Cand G,...,C, = C.

Redundancy for general clauses:

C is called redundant w.r.t. N, if all ground instances Co of C are
redundant w.r.t. Gz(N).

Intuition: Redundant clauses are neither minimal counterexamples
nor productive.

Note: The same ordering > is used for ordering restrictions and for
redundancy (and for the completeness proof).

18

Examples of Redundancy

Proposition 2.40:
e C tautology (i.e., = C) = C redundant w.r.t. any set N.
¢ CoCD = Dredundantw.r.t. NU{C}
e CoCD = DVLoredundant w.r.t. NU{CV L, D}

(Under certain conditions one may also use non-strict subsumption,
but this requires a slightly more complicated definition of redundancy.)

19

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Resg)

= ResZ (N \ Red(N)) € N U Red(N)

Theorem 2.41:
Let N be saturated up to redundancy. Then

N=ls1leN

20

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:
e consider the construction of the candidate model I; for Resg
e redundant clauses are not productive
e redundant clauses in N are not minimal counterexamples for I

The premises of “essential’ inferences are either minimal counterex-

amples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.39.

21

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) NC M= Red(N) C Red(M)
(iil) M C Red(N) = Red(N) C Red(N \ M)

Proof:

(i) Let C € Red(N). Then there exist (i, ..., C, € N,n > 0 such
that GG < Cforalli=1,..., nand G, ..., C, = C.

We assumed that N C M, so we know that Ci, ..., C, € M.
Thus: there exist Cq, ..., C, € M,n > 0 such that C; < C for all
i=1,..., nand G, ..., Cn = C. Therefore, C € Red(M).

22

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) N C M = Red(N) C Red(M)
(i) M C Red(N) = Red(N) C Red(N \ M)
Proof (Idea):

(ii) Let C € Red(N). Then there exist Cy,...,C, € N, n > 0 such that
Ci<Cforalli=1,...,nand Cy,...,C, = C.

Case 1: For all i, C; € M. Then C € Red(N\M).

Case 2: For some i, C; € M C Red(N). Then for every such index i there
exist Cliv“'Cr’;,- & N such that CJ’ < C; and Ci,...,C,’;i = C;. We can
replace C; above with C/, ..., C,’”. We can iterate the procedure until
none of the C;'s are in M (termination guaranteed by the fact that > is
well-founded).

23

Some theorem provers for first-order logic

e SPASS http://www.spass-prover.org/
e E http://www4.informatik.tu-muenchen.de/~schulz/E/E.html

e Vampire http://www.vprover.org/

Example (SPASS)

24

Decidable subclasses of first-order logic

25

Applications

Use ordered resolution with selection to give a decision procedure
for the Ackermann class.

26

The Ackermann class

> = (Q,), Q is a finite set of constants

The Ackermann class consists of all sentences of the form

Ix1 ... 3AxeVYx3yr . 3ymF(X1, - Xn, X, YL e Ym)

Idea: CNF translation:

Ix1 .. 3xpVX3yr - FymF (X, X X, Y e Yim)
=5 VxF(C1,...,Cn, x, fi(Xx), ..., fm(x))
=k Yx AV Li(ct, ..., cn, x, A(x), ..., fm(x))

ci,...,Cn are Skolem constants

fi,...,fm are unary Skolem functions

27

The Ackermann class

Y = (€, M), Qis a finite set of constants

The Ackermann class consists of all sentences of the form
Ix1 .. 3xpVXx3yr . 3ymF (X, o X X, YL - Yim)

Idea: CNF translation:

Ix1 .. 33X VYX3yr . TymF(XL, - X X, YL ey Yim)
=*Vx AV Li(ci,...,cn x, f1(x), ..., fm(x))

The clauses are in the following classes:

G = G(cy, ..., cy) ground clauses without function symbols

V = V(x,c,...,cy) clauses with one variable and without function symbols

Gr = G(c1,...,¢n, f1,..., 1) ground clauses with function symbols

Vi = V(x,c1,...,¢n f1(X), ..., fa(x)) clauses with a variable & function symbols

28

The Ackermann class

G =G(c, ..., cn) ground clauses without function symbols

V=V(x,a,..., cn) clauses with one variable and without function symbols

Gr = G(cy, - - -, ch, f, ..., f,) ground clauses with function symbols

Vi = V(x,a,..., cny (%), .-+, fa(x)) clauses with a variable & function symbols

Term ordering

f(t) > t; terms containing function symbols larger than those who do not.

B = A iff exists argument u of B such that every argument t of A: u >t
Ordered resolution: G U V U Gf U V¢ is closed under ordered resolution.
G,G— G; G,V— G; G,Gf+— nothing; G, Vs — nothing

V.V—= VUG, V,Gr— GUGr, V,Vi—> GUVUGFUV,

Gr, Gr— Gr; Gf, V= GFrUG; Vi, V= GUV U VrU Gy

Observation 1: G U V U Gf U V¥ finite set of clauses (up to renaming of
variables).

29

The Ackermann class

G = G(ci1, - .., cp) ground clauses without function symbols

V = V(x,c,...,cp) clauses with one variable and without function symbols

Gr = G(c1, ..., Cn, f;) ground clauses with function symbols

Vi = V(x,c,...,cn A(X), ..., fa(x)) clauses with a variable & function symbols

Term ordering

f(t) > t; terms containing function symbols larger than those who do not.
B >~ A iff exists argument u of B such that every argument t of A: u >t
Ordered resolution: G U V U Gr U V¥ is closed under ordered resolution.
G,G— G; G,V ~— G; G,Grf+— nothing; G, Vs +— nothing

V.V—- VUG, V,Gr— GUGr, V,Vi— GUVUGFUV,

Gr, Gr— Gr; Gf, V= GrUG; Vi, V= GUV U VrU Gy

Observation 2: No clauses with nested function symbols can be generated.

30

The Ackermann Class

Conclusion:

Resolution (with implicit factorization) will always terminate if the input

clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of

formulae in the Ackermann class.

31

The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely
relational signatures ¥ = (2,), where Q = (), and every p € I1 has arity 1.

Abstract syntax:

=T | P(x) | ®1 A Dy | =D | Vx®

Idea. Let & be a MFO formula with k predicate symbols.

Let A = (U, {pa}pen) be a X-algebra. The only way to distinguish the
elements of U4 is by the atomic formulae p(x), p € IN.

e the elements which a € U4 which belong to the same p4's, p € I
can be collapsed into one single element.

o if M= {p!,..., pX} then what remains is a finite structure with at
most 2K elements.

e the truth value of a formula: computed by evaluating all subformulae.

32

The Monadic Class

MFQO Abstract syntax: @ := T | P(x) | #1 APy | =P | VxP

Theorem (Finite model theorem for MFO). If ® is a satisfiable MFO
formula with k predicate symbols then ® has a model where the domain is
a subset of {0, 1}X.

Proof: Let B = ({0,1}*, {pg. ..., ps}), where pi={(by, ..., by) | bi=1}.

Let A= (Ua,{pP4, .-, P }), B : X — Ux be such that (A, B) & &.
We construct a model for & with cardinality at most 2K as follows:

e Let h: A — B be defined for all a € U4 by:
h(a) = (b1, ..., bx) where b; = 1 if a € p;\ and 0 otherwise.
Then a € p'y iff h(a) € pjz foralla€ U andalli=1,..., k.

o Let B/ = ({0,1}* N h(UA), {pg N h(UA),..., ps N h(U4)}).
e We show that (B’, 830 h) = &.

33

The Monadic Class

Let B = ({0,1}", {pg,...,pg}), where ps={(b1, ..., by) | bj=1}.

Let A= (Ua, {pY, ... P%}), B:X — Uy be such that (A, B) = ¢.
We construct a model for ® with cardinality at most 2% as follows:

e Let h: A — B be defined for all a € U4 by:
h(a) = (b1, ..., bx) where bj =1 if a € p;\ and 0 otherwise.

Then a € p'y iff h(a) € pjz foralla€ U andalli=1,..., k.

o Let B = ({0,1}* N h(UA), {pg N h(UA),...,pg N hULD).
e We show that (B’, 80 h) E .

Induction on the structure of ®

o =T OK

e & = p'(x). Then (A B) | & iff B(x) € p'y iff h(B(x)) € pj iff
(B’,B0h) E .

The Monadic Class

Let B = ({0,1}", {pg,...,pg}), where ps={(b1, ..., by) | bj=1}.

Let A= (Ua, {pY, ... P%}), B:X — Uy be such that (A, B) = ¢.
We construct a model for ® with cardinality at most 2% as follows:

e Let h: A — B be defined for all a € U4 by:

h(a) = (b1, ..., bx) where bj =1 if a € p;\ and 0 otherwise.

Then a € p'y iff h(a) € pjz foralla€ U andalli=1,..., k.

o Let B = ({0,1}* N h(UA), {pg N h(UA),...,pg N hULD).
e We show that (B’, 80 h) E .

Induction on the structure of ¢
o & = P; A P,: standard

o & = —P;: standard

35

The Monadic Class

Let B = ({0,1}* {pg,...,pg}), where ps={(b1, ..., bx) | bj=1}.

Let A= (Ua, {pY. --.P%}), B:X — Ua be such that (A,) E .
We construct a model for & with cardinality at most 2% as follows:

e Let h: A — B be defined for all a € U4 by:
h(a) = (b1, ..., bx) where bj =1 if a € piA and 0 otherwise.

Then a € p'y iff h(a) € pjz foralla€ Ug andalli=1,..., k.

o Let B/ = ({0, 1} N h(UA), {pg N h(UA),...,pg N h(UAa)}).
e We show that (B’, 80 h) E .

Induction on the structure of ®

o O = Vx®;(x). Then the following are equivalent:
— (A, B)E® (i.e. (A, B[x — a])EP; forall a € Uy)
— (B, B[x +— a] o h)|=®; for all acU 4 (ind. hyp)
— (B’, B o h[x — b])E®; for all b€{0,1}* N h(A) (i.e. (B’, Boh)[=®)

The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several
other classes):

William H. Joyner Jr.
Resolution Strategies as Decision Procedures.
J. ACM 23(3): 398-417 (1976)

Idea:

e Use orderings to restrict the possible inferences

e |dentify a class of clauses (with terms of bounded depth) which
contains the type of clauses generated from the respective fragment
and is closed under ordered resolution (+ red. elim. criteria)

e Show that a saturation of the clauses can be obtained in finite time

37

The Monadic Class

Resolution-based decision procedure for the Monadic Class:

®: vx13y; ... VX 3y (.p5(x)......p (yi)..)
— VX1 .. .\V/Yk(...ps(x,')...p/(fsk(yl, . ,7,‘)...)
Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears

- each variable-disjoint partition has at most n = > ._; |Xj|
variables (can order the variables as xi, ..., xp)

- the variables of each non-ground block can occur either in
atoms p(x;) or in atoms P(fg(x1,...,x)), 0<t<n

It can be shown that this class contains all CNF’s of formulae in the

monadic class and is closed under ordered resolution.

38

