Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

Part 1: Propositional Logic

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
 - ⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

 F_{Π} is the set of propositional formulas over Π defined as follows:

Notational Conventions

• We omit brackets according to the following rules:

$$-\neg >_p \land >_p \lor >_p \lor >_p \leftrightarrow$$
 (binding precedences)

- \vee and \wedge are associative and commutative

1.2 **Semantics**

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

$$\mathcal{A}:\Pi \rightarrow \{0,1\}.$$

where $\{0, 1\}$ is the set of truth values.

Truth Value of a Formula in A

Given a Π -valuation \mathcal{A} , the function \mathcal{A}^* : Σ -formulas $\to \{0,1\}$ is defined inductively over the structure of F as follows:

$$egin{align} \mathcal{A}^*(ot) &= 0 \ &\mathcal{A}^*(ot) = 1 \ &\mathcal{A}^*(P) &= \mathcal{A}(P) \ &\mathcal{A}^*(
abla F) &= 1 - \mathcal{A}^*(F) \ &\mathcal{A}^*(F
ho G) &= \mathsf{B}_
ho(\mathcal{A}^*(F), \mathcal{A}^*(G)) \ &\mathcal{A}^*(F
ho G) &= \mathsf{B}_
ho(\mathcal{A}^*(F), \mathcal{A}^*(G)) \ &\mathcal{A}^*(F) &= \mathsf{B}_
ho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(G)) \ &\mathcal{A}^*(F) &= \mathsf{B}_
ho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F)) \ &\mathcal{A}^*(F) &= \mathsf{B}_
ho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F)) \ &\mathcal{A}^*(F) &= \mathsf{B}_\rho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F)) \ &\mathcal{A}^*(F) &= \mathsf{A}_\rho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F)) \ &\mathcal{A}^*(F) &= \mathsf{A}_\rho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^*(F)) \ &\mathcal{A}^*(F) &= \mathsf{A}_\rho(\mathcal{A}^*(F), \mathcal{A}^*(F), \mathcal{A}^$$

with B_{ρ} the Boolean function associated with ρ

For simplicity, we write A instead of A^* .

Truth Value of a Formula in A

Example: Let's evaluate the formula

$$(P \rightarrow Q) \land (P \land Q \rightarrow R) \rightarrow (P \rightarrow R)$$

w.r.t. the valuation \mathcal{A} with

$$\mathcal{A}(P) = 1$$
, $\mathcal{A}(Q) = 0$, $\mathcal{A}(R) = 1$

(On the blackboard)

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F; F holds under A):

$$A \models F : \Leftrightarrow A(F) = 1$$

F is valid (or is a tautology):

$$\models F : \Leftrightarrow A \models F$$
 for all Π -valuations A

F is called satisfiable iff there exists an A such that $A \models F$. Otherwise F is called unsatisfiable (or contradictory).

$$F = (A \lor C) \land (B \lor \neg C)$$

A	В	С	$(A \lor C)$	$\neg C$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	1	1

Let $\mathcal{A}: \{P, Q, R\} \rightarrow \{0, 1\}$ with $\mathcal{A}(P) = 0$, $\mathcal{A}(Q) = 1$, $\mathcal{A}(R) = 1$.

$$\mathcal{A} \models (A \lor C) \land (B \lor \neg C)$$

$$\mathcal{A} \models (A \lor C) \land (B \lor \neg C)$$

$$\mathcal{A} \models \{(A \lor C), (B \lor \neg C)\}$$

1.3 Models, Validity, and Satisfiability

Examples:

 $F \rightarrow F$ and $F \vee \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable

 $F \wedge \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

$$F = (A \lor C) \land (B \lor \neg C)$$

Α	В	С	$(A \lor C)$	$\neg C$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	1	1

F is not valid:

$$\mathcal{A}_1(F)=0$$
 für $\mathcal{A}_1:\{P,Q,R\}\to\{0,1\}$ mit $\mathcal{A}(P)=\mathcal{A}(Q)=\mathcal{A}(R)=0$.

F is satisfiable:

$$\mathcal{A}_2(F)=1 \text{ für } \mathcal{A}: \{P,Q,R\} \rightarrow \{0,1\} \text{ mit } \mathcal{A}(P)=0, \mathcal{A}(Q)=1, \mathcal{A}(R)=1.$$

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π -valuations A, whenever $A \models F$ then $A \models G$.

F and G are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

$$F = (A \lor C) \land (B \lor \neg C)$$
 $G = (A \lor B)$

Check if $F \models G$

A	В	C	$(A \lor C)$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

$$F = (A \lor C) \land (B \lor \neg C)$$
 $G = (A \lor B)$

Check if $F \models G$

A	В	C	$(A \lor C)$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

$$F = (A \lor C) \land (B \lor \neg C)$$
 $G = (A \lor B)$

Check if $F \models G$ Yes, $F \models G$

A	В	C	$(A \lor C)$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	1	1	0	0	0
0	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	0	1	0	1
1	0	1	1	0	0	1
1	0	0	1	1	1	1
1	1	1	1	1	1	1
1	1	0	1	1	1	1

$$F = (A \lor C) \land (B \lor \neg C)$$
 $G = (A \lor B)$

Check if $F \models G$ Yes, $F \models G$

... But it is not true that $G \models F$ (Notation: $G \not\models F$)

Α	В	C	$(A \lor C)$	$(B \vee \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	1	1	0	0	0
0	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	0	1	0	1
1	0	1	1	0	0	1
1	0	0	1	1	1	1
1	1	1	1	1	1	1
1	1	0	1	1	1	1