Decision Procedures for Verification

Part 1. Propositional Logic (2)

31.10.2013

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Last time

1.1 Syntax

- Language
 - propositional variables
 - logical symbols \Rightarrow Boolean combinations
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

```
\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1
```

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and *G* are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

F valid $\Leftrightarrow \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.4:

 $N \models F \Leftrightarrow N \cup \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A} .

If *F* contains *n* distinct propositional variables, then it is sufficient to check 2^n valuations to see whether *F* is satisfiable or not. \Rightarrow truth table.

So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

The satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)

Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified six classes of sets S of Boolean formulae for which SAT(S) is in PTIME. He proved that all other types of sets of formulae yield an NP-complete problem.

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then H is equivalent to H' where H' is obtained from H by replacing the occurrence of the subformula F by G. (Notation: H = H[F], H' = H[G].)

Proof: By induction over the formula structure of H.

Goal: Prove a property P of propositional formulae

Prove that for every formula F, P(F) holds.

Induction basis: Show that P(F) holds for all $F \in \Pi \cup \{\top, \bot\}$

Let F be a formula (not in $\Pi \cup \{\top, \bot\}$).

Induction hypothesis: We assume that P(G) holds for all strict subformulae G of F.

Induction step: Using the induction hypothesis, we show that P(F) holds as well. In order to prove that P(F) holds we usually need to consider various cases (reflecting the way the formula F is built):

Case 1: $F = \neg G$ Case 2: $F = G_1 \land G_2$ Case 3: $F = G_1 \lor G_2$ Case 4: $F = G_1 \rightarrow G_2$ Case 5: $F = G_1 \leftrightarrow G_2$

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H:

 $(F \wedge F) \leftrightarrow F$ $(F \lor F) \leftrightarrow F$ (Idempotency) $(F \land G) \leftrightarrow (G \land F)$ $(F \lor G) \leftrightarrow (G \lor F)$ (Commutativity) $(F \land (G \land H)) \leftrightarrow ((F \land G) \land H)$ $(F \lor (G \lor H)) \leftrightarrow ((F \lor G) \lor H)$ (Associativity) $(F \land (G \lor H)) \leftrightarrow ((F \land G) \lor (F \land H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ (Distributivity)

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H:

 $(F \land (F \lor G)) \leftrightarrow F$ $(F \lor (F \land G)) \leftrightarrow F$ (Absorption) $(\neg\neg F) \leftrightarrow F$ (Double Negation) $\neg (F \land G) \leftrightarrow (\neg F \lor \neg G)$ $\neg (F \lor G) \leftrightarrow (\neg F \land \neg G)$ (De Morgan's Laws) $(F \land G) \leftrightarrow F$, if G is a tautology $(F \lor G) \leftrightarrow \top$, if G is a tautology (Tautology Laws) $(F \land G) \leftrightarrow \bot$, if G is unsatisfiable $(F \lor G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)

We define conjunctions of formulas as follows:

$$\begin{split} & \bigwedge_{i=1}^{0} F_{i} = \top. \\ & \bigwedge_{i=1}^{1} F_{i} = F_{1}. \\ & \bigwedge_{i=1}^{n+1} F_{i} = \bigwedge_{i=1}^{n} F_{i} \wedge F_{n+1}. \end{split}$$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} F_{i} = \bot.$$
$$\bigvee_{i=1}^{1} F_{i} = F_{1}.$$
$$\bigvee_{i=1}^{n+1} F_{i} = \bigvee_{i=1}^{n} F_{i} \vee F_{n+1}.$$

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

\perp	the empty clause
Ρ	positive unit clause
$\neg P$	negative unit clause
$P \lor Q \lor R$	positive clause
$P \lor \neg Q \lor \neg R$	clause
$P \lor P \lor \neg Q \lor \neg R \lor R$	allow repetitions/complementary literals

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \Rightarrow_{\mathcal{K}} (F \rightarrow G) \land (G \rightarrow F)$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$(F \rightarrow G) \Rightarrow_{\kappa} (\neg F \lor G)$$

Step 3: Push negations downward:

$$eglinet{-} (F \lor G) \Rightarrow_{\mathcal{K}} (\neg F \land \neg G) \\
eglinet{-} \neg (F \land G) \Rightarrow_{\mathcal{K}} (\neg F \lor \neg G)
end{tabular}$$

Step 4: Eliminate multiple negations:

$$\neg \neg F \Rightarrow_{K} F$$

The formula obtained from a formula F after applying steps 1-4 is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_{\mathcal{K}} (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \bot :

 $(F \land \top) \Rightarrow_{\mathcal{K}} F$ $(F \land \bot) \Rightarrow_{\mathcal{K}} \bot$ $(F \lor \top) \Rightarrow_{\mathcal{K}} \top$ $(F \lor \bot) \Rightarrow_{\mathcal{K}} F$ $\neg \bot \Rightarrow_{\mathcal{K}} T$ $\neg \top \Rightarrow_{\mathcal{K}} \bot$

Proving termination is easy for most of the steps; only steps 1, 3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

"find a formula G in CNF such that $\models F \leftrightarrow G$ "

is unpractical.

But if we relax the requirement to

"ifind a formula G in CNF such that $F \models \bot$ iff $G \models \bot$ "

we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:

A formula F[F'] is satisfiable iff $F[P] \land (P \leftrightarrow F')$ is satisfiable (where P new propositional variable that works as abbreviation for F').

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F'$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow . A subformula F' of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.9:

Let F[F'] be a formula containing neither \rightarrow nor \leftrightarrow ; let P be a propositional variable not occurring in F[F'].

If F' has positive polarity in F, then F[F'] is satisfiable if and only if $F[P] \land (P \rightarrow F')$ is satisfiable.

If F' has negative polarity in F, then F[F'] is satisfiable if and only if $F[P] \wedge (F' \rightarrow P)$ is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F = (Q_1 \land Q_2) \lor (R_1 \land R_2)$.

The following are equivalent:

• $F \models \perp$

•
$$P_F \land (P_F \leftrightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \leftrightarrow (Q_1 \land Q_2))$$

 $\land (P_{R_1 \land R_2} \leftrightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (P_F \rightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \rightarrow (Q_1 \land Q_2))$
 $\land (P_{R_1 \land R_2} \rightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (\neg P_F \lor P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (\neg P_{Q_1 \land Q_2} \lor Q_1) \land (\neg P_{Q_1 \land Q_2} \lor Q_2)$
 $\land (\neg P_{R_1 \land R_2} \lor R_1) \land (\neg P_{R_1 \land R_2} \lor R_2)) \models \bot$

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

 $(F_1, \ldots, F_n, F_{n+1}), n \ge 0,$

called inferences or inference rules, and written

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F_k$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 $\Gamma \text{ is called sound } :\Leftrightarrow$

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \ldots, F_n \models F$$

 Γ is called complete : \Leftrightarrow

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete $:\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

1.	$ eg P \lor eg P \lor Q$	(given)
2.	$P \lor Q$	(given)
3.	$ eg R \lor eg Q$	(given)
4.	R	(given)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into 1.)
6.	$ eg P \lor Q$	(Fact. 5.)
7.	$Q \lor Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

D

	C	$\lor A \lor \ldots \lor A \qquad \neg A \lor$
		$C \lor D$
1.	$ eg P \lor eg P \lor Q$	(given)
2.	$P \lor Q$	(given)
3.	$ eg R \lor eg Q$	(given)
4.	R	(given)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into 1.)
6.	$Q \lor Q \lor Q$	(Res. 2. into 5.)
7.	$\neg R$	(Res. 6. into 3.)
8.	\bot	(Res. 4. into 7.)

Theorem 1.10. Propositional resolution is sound.

Proof:

Let \mathcal{A} valuation. To be shown:

- (i) for resolution: $\mathcal{A} \models C \lor A$, $\mathcal{A} \models D \lor \neg A \Rightarrow \mathcal{A} \models C \lor D$
- (ii) for factorization: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A} \lor \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{A}$

(i): Assume $\mathcal{A}^*(C \lor A) = 1$, $\mathcal{A}^*(D \lor \neg A) = 1$. Two cases need to be considered: (a) $\mathcal{A}^*(A) = 1$, or (b) $\mathcal{A}^*(\neg A) = 1$. (a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \lor D$ (b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \lor D$

(ii): Assume $\mathcal{A} \models C \lor A \lor A$. Note that $\mathcal{A}^*(C \lor A \lor A) = \mathcal{A}^*(C \lor A)$, i.e. the conclusion is also true in \mathcal{A} .

Soundness of Resolution

Note: In propositional logic we have:

1.
$$\mathcal{A} \models L_1 \lor \ldots \lor L_n \Leftrightarrow$$
 there exists *i*: $\mathcal{A} \models L_i$.

2. $\mathcal{A} \models \mathcal{A}$ or $\mathcal{A} \models \neg \mathcal{A}$.

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

• The limit valuation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on propositional variables that is *total* and well-founded.
- 2. Extend \succ to an ordering \succ_L on literals:

$$[\neg]P \succ_L [\neg]Q , \text{ if } P \succ_Q$$
$$\neg P \succ_L P$$

3. Extend \succ_L to an ordering \succ_C on clauses: $\succ_C = (\succ_L)_{mul}$, the multi-set extension of \succ_L . *Notation:* \succ also for \succ_L and \succ_C . Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$\begin{array}{l} S_1 \succ_{\mathsf{mul}} S_2 :\Leftrightarrow S_1 \neq S_2 \\ \text{and } \forall m \in M : [S_2(m) > S_1(m) \\ \Rightarrow \quad \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))] \end{array}$$

Theorem 1.11:

a) \succ_{mul} is a partial ordering. b) \succ well-founded $\Rightarrow \succ_{mul}$ well-founded c) \succ total $\Rightarrow \succ_{mul}$ total

Proof:

see Baader and Nipkow, page 22-24.

Suppose $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$. Then:

 $P_{0} \lor P_{1}$ $\prec P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{4} \lor P_{3}$ $\prec \neg P_{1} \lor \neg P_{4} \lor P_{3}$ $\prec \neg P_{5} \lor P_{5}$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under *Res*

$$Res(N) = \{C \mid C \text{ is concl. of a rule in } Res w / \text{ premises in } N\}$$

 $Res^{0}(N) = N$
 $Res^{n+1}(N) = Res(Res^{n}(N)) \cup Res^{n}(N), \text{ for } n \ge 0$
 $Res^{*}(N) = \bigcup_{n \ge 0} Res^{n}(N)$

N is called saturated (wrt. resolution), if $Res(N) \subseteq N$.

Proposition 1.12

- (i) $Res^*(N)$ is saturated.
- (ii) *Res* is refutationally complete, iff for each set *N* of ground clauses:

$$N \models \bot \Leftrightarrow \bot \in Res^*(N)$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ . Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in A;
- $\mathcal{A} \models N$, if N is saturated and $\perp \not\in N$.

Construction according to \succ , starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by ≺. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.

In what follows, instead of referring to partial valuations \mathcal{A}_{C} we will refer to partial interpretations I_{C} (the set of atoms which are true in the valuation \mathcal{A}_{C}).

- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If *C* is false, one would like to change *I_C* such that *C* becomes true.

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$			
2	$P_0 \lor P_1$			
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$			
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	P_3 not maximal;
				min. counter-ex.
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	
<i>I</i> =	$\overline{\{P_1, P_2, P_4, P_5\}} = \mathcal{A}^{-1}$	$\mathcal{A}(1)$: \mathcal{A} is not a	model o	of the clause set

 \Rightarrow there exists a counterexample.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If C is false, one would like to change I_C such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C .
- Hence, one chooses Δ_C = {A} if, and only if, C is false in I_C, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$\frac{\neg P_1 \lor P_4 \lor P_3 \lor P_0 \quad \neg P_1 \lor \neg P_4 \lor P_3}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	
3	$P_1 ee P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	Ø	P_3 occurs twice
				minimal counter-ex.
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_4\}$	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	counterexample
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	

The same *I*, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$\frac{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	${P_2}$	
9	$ eg P_1 \lor eg P_1 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_3\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \emptyset, & \text{otherwise} \end{cases} \end{split}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$. We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

Some Properties of the Construction

Proposition 1.13:

(i)
$$C = \neg A \lor C' \Rightarrow \text{no } D \succeq C \text{ produces } A.$$

(ii) C productive $\Rightarrow I_C \cup \Delta_C \models C$.

(iii) Let $D' \succ D \succeq C$. Then

$$I_D \cup \Delta_D \models C \Rightarrow I_{D'} \cup \Delta_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $max(D) \succ max(C)$:

$$I_D \cup \Delta_D \not\models C \Rightarrow I_{D'} \cup \Delta_{D'} \not\models C \text{ and } I_N \not\models C.$$

Some Properties of the Construction

(iv) Let $D' \succ D \succ C$. Then $I_D \models C \Rightarrow I_{D'} \models C$ and $I_N \models C$. If, in addition, $C \in N$ or $\max(D) \succ \max(C)$: $I_D \nvDash C \Rightarrow I_{D'} \nvDash C$ and $I_N \nvDash C$. (v) $D = C \lor A$ produces $A \Rightarrow I_N \nvDash C$. **Theorem 1.14** (Bachmair & Ganzinger):

Let \succ be a clause ordering, let N be saturated wrt. *Res*, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15:

Let *N* be saturated wrt. *Res*. Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof:

Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively) $\Rightarrow I_N \models A \text{ and } I_N \not\models C'$ $\Rightarrow \text{ some } D = D' \lor A \in N \text{ produces A. As } \frac{D' \lor A}{D' \lor C'}, \text{ we infer}$ that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ $\Rightarrow \text{ contradicts minimality of } C.$

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Ordered Resolution with Selection

Ideas for improvement:

- In the completeness proof (Model Existence Theorem) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ order restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed
 - \Rightarrow choose a negative literal don't-care-nondeterministically
 - \Rightarrow selection

A selection function is a mapping

 $S: C \mapsto$ set of occurrences of *negative* literals in C

Example of selection with selected literals indicated as |X|:

$$\neg A \lor \neg A \lor B$$

$$\neg B_0 \lor \neg B_1 \lor A$$

In the completeness proof, we talk about (strictly) maximal literals of clauses.

(i) $A \succ C$;

- (ii) nothing is selected in C by S;
- (iii) $\neg A$ is selected in $D \lor \neg A$, or else nothing is selected in $D \lor \neg A$ and $\neg A \succeq \max(D)$.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max(C)$.

Resolution Calculus Res_S^{\succ}

$$\frac{C \lor A \lor A}{(C \lor A)}$$
 [ordered factoring]

if A is maximal in C and nothing is selected in C.

Search Spaces Become Smaller

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.