Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

19.12.2013

Collection of exercises: Part 1

Exercise 1. Assume $R \succ Q \succ P$. Let N_1 be the following set of clauses:

- $(C_1) \qquad \neg R \lor \neg P$ $(C_2) \qquad Q \lor P$ $(C_3) \qquad \neg Q$ $(C_4) \qquad R \lor \neg P \lor Q$

Use the ordered resolution calculus Res[≻] described in the lecture for checking the satisfiability of the set N_1 of clauses.

Exercise 2. Assume $P \succ Q \succ R \succ S$. Let N_2 be the following set of clauses:

- (C_1) $\neg Q \lor \neg P \lor \neg S$
- $(C_2) R \lor P$ $(C_3) Q \lor S$
- (1) Define a selection function S such that this set of clauses is saturated w.r.t. the ordered resolution calculus with selection $\operatorname{Res}_S^{\succ}$. Justify your choice.
- (2) Sort the clauses according to \succ_C .
- (3) Construct a model of N_2 using the canonical construction presented in the lecture.

Exercise 3. Give the definition of redundancy of a clause w.r.t. a set N of clauses.

Assume $P \succ S \succ Q \succ R$.

- (1) Is the clause $P \vee \neg S$ redundant w.r.t. the set of clauses $\{\neg Q \vee P, R \vee \neg P, Q \vee \neg S\}$?
- (2) Is the clause $\neg Q \lor R$ redundant w.r.t. the set of clauses $\{\neg Q \lor P, R \lor \neg P, Q \lor \neg S\}$? Justify your answers.

Exercise 4. Let $\Sigma = (\{f/1, g/1, h/1, a\}, \{p/2, q/1, r/2\})$. Let X be a set of variables, and assume that $\{x, y, z, u, v, w, s, t\} \subseteq X$.

Let \succ an ordering on ground atoms with the property that for all ground terms $t_1, ..., t_{12}$, $\neg p(t_1, t_2) \succ p(t_3, t_4) \succ \neg q(t_5, t_6) \succ q(t_7, t_8) \succ \neg r(t_9, t_{10}) \succ r(t_{11}, t_{12}).$

Let N be the following set of clauses:

- $\neg r(f(x), y) \lor p(g(x), x)$
- (2) $\neg q(h(g(z))) \lor \neg p(z, u)$
- (3) q(h(v))(4) $r(w, g(s)) \vee p(t, f(s))$

Use the ordered resolution calculus Res^{\succ} described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 5. Consider the following formulae over a signature containing function symbols $\Omega = \{c/0, f/1\}$ and predicate symbols $\Pi = \{P/1\}$:

- $F_1 := P(c)$
- $F_2 := \forall x (P(x) \to P(f(x)))$
- $F_3 := P(f(f(f(c)))).$

Use resolution to prove that $\{F_1, F_2\} \models F_3$.

Exercise 6. Let $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, a/0, f/1\}$ and $\Pi = \{p/1\}$.

- (1) How many Herbrand interpretations over Σ do exist? Explain briefly.
- (2) How many Herbrand models over Σ has the following formula F?

$$F := p(b) \land \forall x \neg p(f(f(x)))$$

Justify your answer.

Exercise 7.

- (a) Give definitions for the following fragments of first-order logic:
 - The Bernays-Schönfinkel class;
 - The Ackermann class.
 - The monadic class.
- (b) What is the idea in the proof of decidability for the Bernays-Schönfinkel class?
- (c) To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):
 - (1) $\exists y \forall x \ ((p(x) \lor r(x,y)) \land q(y))$
 - (2) $\forall x \exists y \exists u ((p(x) \lor q(y)) \land (q(y) \lor p(u)))$
 - (3) $\exists z \forall x \exists y (p(x) \lor q(y)) \land q(z)$
 - (4) $\exists x \forall y ((p(x) \lor r(y)) \land q(y))$
 - (5) $\forall x \exists y \forall z \exists u ((p(x) \lor s(x, y, z)) \land (q(y) \lor p(u) \lor s(x, z, u)))$
 - (6) $\exists z \forall x \exists y ((p(x) \lor r(x,y)) \land q(z))$