Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 20, 2015

Exercises for "Decision Procedures for Verification" Exercise sheet 10

Exercise 10.1: (2 P)

Let F_1 be the following conjunction (in linear rational arithmetic $LI(\mathbb{Q})$):

$$F_1: \qquad \begin{array}{rcl} x_1 + x_2 + 2x_3 & = & 2 & & \wedge \\ x_1 + x_3 + \frac{1}{5} & < & 0 & & \wedge \\ x_2 - x_3 & \leq & \frac{1}{2} & & \wedge \\ x_1 + 5x_3 & \leq & 5 & \end{array}$$

Check the satisfiability of F_1 using the Loos-Weispfenning method for quantifier elimination.

Exercise 10.2: (4 P)

Let \mathcal{T} be the combination of $LI(\mathbb{Z})$ (linear arithmetic over \mathbb{Z}) and UIF_{Σ} , the theory of uninterpreted function symbols in the signature $\Sigma = \{\{f/1, g/2\}, \emptyset\}$.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the "guessing" version of the Nelson-Oppen procedure:

- (1) $\phi = (c + d \approx e \land f(e) \approx c + d \land f(f(c + d)) \not\approx e).$
- (2) $\psi = (f(c) > 0 \land f(d) > 0 \land f(c) + f(d) \approx e \land g(c, e) \not\approx g(d, e))$

Exercise 10.3: (2 P)

Let \mathcal{T} be the combination of $LI(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and UIF_{Σ} , the theory of uninterpreted function symbols in the signature $\Sigma = \{\{f/1, g/2\}, \emptyset\}$.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):

•
$$\phi = (c + d \approx e \land f(e) \approx c + d \land f(f(c + d)) \not\approx e).$$

Remark: You will be able to solve this exercise only after the lecture which will take place on Tuesday, 27.1.2015.

Supplementary exercises.

Exercise 10.4: (4 P)

Let $\Sigma = (\Omega, \Pi)$ be a signature, and let $\Pi_0 \subseteq \Pi \cup \{\approx\}$.

We say that a theory \mathcal{T} is *convex* if for all atomic formulae $A_1(\overline{x}), \ldots, A_n(\overline{x})$, and all atomic formulae $B_1(\overline{x}), \ldots, B_k(\overline{x})$ where $B_i(\overline{x})$ is the equality $s_i \approx t_i$, with s_i, t_i terms:

If
$$\mathcal{T} \models (\bigwedge_{i=1}^n A_i(\overline{x})) \rightarrow (\bigvee_{j=1}^k B_j(\overline{x}))$$
 then there exists $1 \leq j \leq k$ s.t. $\mathcal{T} \models (\bigwedge_{i=1}^n A_i(\overline{x})) \rightarrow B_j(\overline{x})$.

Let $\mathcal{T}_{\mathbb{Z}}$ be the theory of integers having as signature $\Sigma_{\mathbb{Z}} = (\Omega, \Pi)$, where $\Omega = \{\dots, -2, -1, 0, 1, 2, \dots\} \cup \mathbb{Z}$ $\{\ldots, -3\cdot, -2\cdot, 2\cdot, 3\cdot, \ldots\} \cup \{+, -\} \text{ and } \Pi = \{\leq\}, \text{ where: }$

- \bullet ..., -2, -1, 0, 1, 2, ... are constants (intended to represent the integers)
- ..., -3, -2, 3, ... are unary functions (representing multiplication with constants)
- +, are binary functions (usual addition/subtraction)
- $\bullet \le \text{is a binary predicate.}$

The intended interpretation of $\mathcal{T}_{\mathbb{Z}}$ has domain \mathbb{Z} , and the function and predicate symbols are interpreted in the obvious way.

Show that:

- $\begin{array}{l} \bullet \ \, \mathcal{T}_{\mathbb{Z}} \models [(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow (z \approx u \vee z \approx v)] \\ \bullet \ \, \mathcal{T}_{\mathbb{Z}} \not\models [(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx u] \\ \bullet \ \, \mathcal{T}_{\mathbb{Z}} \not\models [(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx v] \\ \end{array}$

Is $\mathcal{T}_{\mathbb{Z}}$ convex?

Exercise 10.5: (6 P)

Let \mathcal{T}_1 and \mathcal{T}_2 be two theories with signatures Σ_1, Σ_2 . Assume that Σ_1 and Σ_2 share only constants and the equality predicate. Let ϕ be a ground formula over the signature $(\Sigma_1 \cup \Sigma_2)^c =$ $(\Omega_1 \cup \Omega_2 \cup C, \Pi_1 \cup \Pi_2)$ (the extension of the union $\Sigma_1 \cup \Sigma_2$ with a countably infinite set C of constants). The purification step in the Nelson-Oppen decision procedure for satisfiability of ground formulae in the combination of \mathcal{T}_1 and \mathcal{T}_2 can be described as follows:

(Step 1) Purify all terms by replacing, in a bottom-up manner, the "alien" subterms in ϕ (i.e. terms starting with a function symbol in Σ_i occurring as arguments of a function symbol in Σ_j , $j \neq i$) with new constants (from a countably infinite set C of constants). The transformations are schematically represented as follows:

$$(\neg)P(\ldots,g(\ldots,f(t_1,\ldots,t_n),\ldots) \mapsto (\neg)P(\ldots,g(\ldots,u,\ldots),\ldots) \wedge u \approx t$$

where $t = f(t_1, \dots, t_n), f \in \Sigma_1, g \in \Sigma_2$ (or vice versa).

(Step 2) Purify mixed equalities and inequalities by adding additional constants and performing the following transformations (where $f \in \Sigma_1$ and $g \in \Sigma_2$ or vice versa):

$$f(s_1, \dots, s_n) \approx g(t_1, \dots, t_m) \mapsto u \approx f(s_1, \dots, s_n) \wedge u \approx g(t_1, \dots, t_m)$$

$$f(s_1, \dots, s_n) \not\approx g(t_1, \dots, t_m) \mapsto u \approx f(s_1, \dots, s_n) \wedge v \approx g(t_1, \dots, t_m) \wedge u \not\approx v$$

(Step 3) Purify mixed literals by renaming alien terms:

$$(\neg)P(\ldots,s_i,\ldots) \mapsto (\neg)P(\ldots,u,\ldots) \wedge u \approx s_i$$

if P is a predicate symbol in Σ_1 and s_i is a Σ_2^c -term (or vice versa).

After purification we obtain a conjunction $\phi_1 \wedge \phi_2$, with ϕ_i ground Σ_i^c -formula. Prove that:

- ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$ if and only if $\phi_1 \wedge \phi_2$ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$.
- If ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$ then ϕ_i is satisfiable w.r.t. \mathcal{T}_i for i = 1, 2.

Please submit your solution until Wednesday, January 28, 2015 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.