Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 27, 2015

Exercises for "Decision Procedures for Verification" Exercise sheet 11

Exercise 11.1: (2 P)

Let \mathcal{T} be the combination of $LI(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and UIF_{Σ} , the theory of uninterpreted function symbols in the signature $\Sigma = \{\{f/1, g/2\}, \emptyset\}$.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):

•
$$\phi = (g(c+d,e) \approx f(g(c,d)) \land c+e \approx d \land e \geq 0 \land c \geq d \land g(c,c) \approx e \land f(e) \not\approx g(c+c,0))$$

Exercise 11.2: (4 P)

Use the Nelson-Oppen procedure for checking the satisfiability of the following formulae:

- 1. $1 \le c \land c \le 3 \land f(c) \not\approx f(1) \land f(c) \not\approx f(3) \land f(1) \not\approx f(2)$ in the combination $LI(\mathbb{Z}) \cup UIF_{\{f\}}$.
- 2. $f(c) \approx f(c+d) \land 1 \leq c \land c \leq d+e \land c+e \leq d \land d=1 \land f(c) \not\approx f(2)$ in the combination $LI(\mathbb{Z}) \cup UIF_{\{f\}}$.

Exercise 11.3: (2 P)

Check the satisfiability w.r.t. $\mathcal{T} = LI(\mathbb{Q})$ of the following set of ground clauses using the "lazy" approach to SMT presented in the class.

$$(\neg(0 \le x) \lor \neg(y \le z)) \land (\neg(z \le x + y) \lor (y \le z)) \land (\neg(0 \le y) \lor (0 \le x)) \land (z \le x + y)$$

For theory reasoning in $LI(\mathbb{Q})$ use the Fourier-Motzkin algorithm.

Exercise 11.4: (2 P)

Let $\mathcal{T} = LI(\mathbb{Q})$, and let $Q := x \ge 1, R := x \le y, P := x + x \le 2$. Use a DPLL(\mathcal{T}) method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$(C_1)$$
 $\neg R \lor P$

$$(C_2)$$
 $\neg Q \lor \neg P$

$$(C_4)$$
 $R \vee P$

Supplementary exercises:

Exercise 11.5: (5 P)

Let \mathcal{T} be a theory with signature Σ and $\mathsf{Mod}(\mathcal{T})$ be its class of models. Show that if $\mathsf{Mod}(\mathcal{T})$ is closed under products then \mathcal{T} is convex.

Exercise 11.6: (5 P)

We say that a theory \mathcal{T} is *stably infinite* if for every quantifier-free formula ϕ , ϕ is satisfiable in \mathcal{T} iff ϕ is satisfiable in a (countably) infinite model of \mathcal{T} .

Let $\mathcal{T}_1, \mathcal{T}_2$ be stably infinite theories with disjoint signatures. Prove that their combination $\mathcal{T}_1 \cup \mathcal{T}_2$ is stably infinite.

Please submit your solution until Wednesday, February 4, 2015 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.