Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
December 2, 2014

Exercises for "Decision Procedures for Verification"
 Exercise sheet 6

Exercise 6.1: (4 P)
Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, f / 1\}$ and $\Pi=\{p / 1\}$.
(a) Which is the universe of the Herbrand interpretations over this signature?

If \mathcal{A} is a Herbrand interpretation over Σ how are $b_{\mathcal{A}}$ and $f_{\mathcal{A}}$ defined?
(b) How many different Herbrand interpretations over Σ do exist? Explain briefly.
(c) How many different Herbrand models over Σ does the formula:

$$
\begin{equation*}
p(f(f(b))) \wedge \forall x(p(x) \rightarrow p(f(x))) \tag{1}
\end{equation*}
$$

have? Explain briefly.
(d) Every Herbrand model over Σ of (1) is also a model of

$$
\begin{equation*}
\forall x p(f(f(x))) \tag{2}
\end{equation*}
$$

Give an example of an algebra that is a model of (1) but not of (2).

Exercise 6.2: (1 P)

Which of the following formulae is in the Bernays-Schönfinkel class?
(1) $\exists y \forall x \exists z \quad((p(x) \vee q(y)) \wedge(p(z) \vee \neg q(y))$
(2) $\forall x \exists y \forall z \exists u((p(x) \vee q(y)) \wedge(q(y) \vee r(u, x))$
(3) $\exists y \exists z \forall x[(p(x) \vee q(y)) \wedge q(z)]$

Exercise 6.3: (2 P)

Compute a most general unifier of

$$
\{f(x, g(x))=y, h(y)=h(v), v=f(g(z), w)\}
$$

using the method presented in the lecture.

Exercise 6.4: (3 P)
Let \succ be a total and well-founded ordering on ground atoms such that, if the atom A contains more symbols than B, then $A \succ B$. Let N be the following set of clauses:

$$
\begin{gathered}
\neg q(z, z) \\
\neg q(f(x), y) \vee q(f(f(x)), y) \vee p(x) \\
\neg p(a) \vee \neg p(f(a)) \vee q(f(a), f(f(a))) \\
p(f(x)) \vee p(g(y)) \\
\neg p(g(a)) \vee p(f(f(a)))
\end{gathered}
$$

(a) Which literals are maximal in the clauses of N ?
(b) Define a selection function S such that N is saturated under $R e s{ }_{S}^{\succ}$. Justify your choice.

Remark: You will be able to solve this exercise only after the lecture from 9.12.2014.

Supplementary exercise

Exercise 6.5: (3 P)

Let F be a closed first-order formula with equality over a signature $\Sigma=(\Omega, \Pi)$. Let $\sim \notin \Omega$ be a new binary relation symbol (written as an infix operator). Let the set $E q(\Sigma)$ contain the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z)
\end{gathered}
$$

and for every $f / n \in \Omega$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

and for every $p / n \in \Pi$ the formula

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \wedge p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Let \tilde{F} be the formula that one obtains from F if every occurrence of the equality symbol \approx is replaced by the relation symbol \sim.
(a) Definition. A binary relation \sim on the support of a Σ-algebra satisfying all properties in $E q(\Sigma)$ is called a congruence relation.
Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Show that the interpretation $\sim_{\mathcal{A}}$ of \sim in \mathcal{A} is a congruence relation. (It is enough if you prove one of the properties of congruence relations, say symmetry; the other properties are proved analogously.)
(b) Let \mathcal{A} be a model of $\tilde{F} \cup E q(\Sigma)$. Use the congruence relation $\sim_{\mathcal{A}}$ to construct a model of F and prove that it is a model.
(c) Prove that a formula F is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Please submit your solution until Wednesday, December 10, 2014 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

