
Decision Procedures for Verification

Decision Procedures (4)

Combinations of decision procedures

20.01.2015

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now:

Decidable subclasses of FOL

The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses)

The Ackermann class

The monadic class

Decision problems/restrictions

Uninterpreted function symbols

Decision procedures for numeric domains

Difference logic

Linear arithmetic over R,Q

The Fourier-Motzkin method

The Loos/Weispfenning method.

2

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic

was developed by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution

method”.

For simplicity, we consider only one particular ODAG, namely Q (as we

have seen above, the results are the same for all ODAGs).

3

Loos-Weispfenning Quantifier Elimination

Let F (x , y) be a positive boolean combination of linear (in-)equations of

the form x ∼i si (y) and 0 ∼j sj (y) with ∼i ,∼j∈ {≈, 6≈,<,≤,>,≥},

(i.e. a formula built from linear (in-) equations, ∨ and ∧, but without ¬).

Goal: Find a finite set T of “test points” so that

∃xF (x , y) |=|
∨

t∈T

F (x , y)[t/x].

In other words:

We want to replace the infinite disjunction ∃x by a finite disjunction.

4

Loos-Weispfenning Quantifier Elimination

If we keep the values of the variables y fixed, we can regard F as a function

F : Q → {0, 1} defined by x 7→ F (x , y)

Remarks:

(1) The value of each of the atoms si (y) ∼i x changes only at si (y),

(2) The value of F can only change if the value of one of its atoms changes.

(3) F is a piecewise constant function; more precisely:

the set of all x with F (x , y) = 1 is a finite union of intervals.

(The union may be empty, the individual intervals may be finite or infinite

and open or closed.)

Let δ(y) = min{|si (y)− sj (y)| | si (y) 6= sj (y)}.

Each of the intervals has either length 0 (i.e., it consists of one point), or

its length is at least δ(y).

5

Loos-Weispfenning Quantifier Elimination

If the set of all x for which F (x , y) is 1 is non-empty, then

(i) F (x , y) = 1 for all x ≤ r(y) for some r(y) ∈ Q

(ii) or there is some point where the value of F (x , y) switches from 0 to 1

when we traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

6

Loos-Weispfenning Quantifier Elimination

We start with a “sufficiently small” test point r(y) to take care of case (i).

For case (ii), we observe that F (x , y) can only switch from 0 to 1 if one

of the atoms switches from 0 to 1. (We consider only positive boolean

combinations of atoms and ∧ and ∨ are monotonic w.r.t. truth values.)

• x ≤ si (y) and x < si (y) do not switch from 0 to 1 when x grows.

• x ≥ si (y) and x ≈ si (y) switch from 0 to 1 at si (y)

⇒ si (y) is a test point.

• x > si (y) and x 6≈ si (y) switch from 0 to 1 “right after” si (y)

⇒ si (y) + ǫ (for some 0 < ǫ < δ(y)) is a test point.

7

Loos-Weispfenning Quantifier Elimination

We start with a “sufficiently small” test point r(y) to take care of case (i).

For case (ii), we observe that F (x , y) can only switch from 0 to 1 if one

of the atoms switches from 0 to 1. (We consider only positive boolean

combinations of atoms and ∧ and ∨ are monotonic w.r.t. truth values.)

• x ≤ si (y) and x < si (y) do not switch from 0 to 1 when x grows.

• x ≥ si (y) and x ≈ si (y) switch from 0 to 1 at si (y)

⇒ si (y) is a test point.

• x > si (y) and x 6≈ si (y) switch from 0 to 1 “right after” si (y)

⇒ si (y) + ǫ (for some 0 < ǫ < δ(y)) is a test point.

If r(y) is sufficiently small and 0 < ǫ < δ(y), then

T := {r(y)} ∪ {si (y) |∼i∈ {≥,≈}} ∪ {si (y) + ǫ| ∼i∈ {>, 6≈}}.

is a set of test points.

8

Loos-Weispfenning Quantifier Elimination

Problems:

(1) We don’t know how small r(y) has to be for case (i).

(2) We don’t know δ(y) for case (ii).

Idea: We consider the limits for r → −∞ and for ǫ → 0 (but positive),

that is, we redefine

T := {−∞} ∪ {si (y) |∼i∈ {≥,≈}} ∪ {si (y) + ǫ| ∼i∈ {>, 6≈}}.

New problem:

How can we eliminate the infinitesimals −∞ and ǫ when we substitute

elements of T for x?

9

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(y))[−∞/x] := limr→−∞(r < s(y)) = ⊤

(x ≤ s(y))[−∞/x] := limr→−∞(r ≤ s(y)) = ⊤

(x > s(y))[−∞/x] := limr→−∞(r > s(y)) =⊥

(x ≥ s(y))[−∞/x] := limr→−∞(r ≥ s(y)) =⊥

(x ≈ s(y))[−∞/x] := limr→−∞(r ≈ s(y)) =⊥

(x 6≈ s(y))[−∞/x] := limr→−∞(r 6≈ s(y)) = ⊤

10

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ < s(y)) = (u < s(y))

(x ≤ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≤ s(y)) = (u < s(y))

(x > s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ > s(y)) = (u ≥ s(y))

(x ≥ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≥ s(y)) = (u ≥ s(y))

(x ≈ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≈ s(y)) =⊥

(x 6≈ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ 6≈ s(y)) = ⊤

We have traversed the real axis from −∞ to +∞.

11

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

Alternatively, we can traverse it from +∞ to −∞.

In this case, the test points are

T ′ := {+∞} ∪ {si (y)| ∼i∈ {≤,≈}} ∪ {si (y)− ǫ| ∼i∈ {<, 6≈}}.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

For a universally quantified formula ∀xF , we replace it by ¬∃x¬F , push

inner negation downwards, and then continue as before.

Note that there is no CNF/DNF transformation required.

Loos-Weispfenning quantifier elimination works on arbitrary positive

formulas.

12

Loos-Weispfenning: Complexity

• One LW-step for ∃ or ∀:

As the number of test points is at most equal to the number of atoms,

the formula size grows quadratically; therefore O(n2) runtime.

• Multiple quantifiers of the same kind:

∃x2∃x1.F (x1, x2, y)

7→ ∃x2.
∨

t1∈T1
F (x1, x2, y)[t1/x1]

7→
∨

t1∈T1
(∃x2.F (x1, x2, y)[t1/x1])

7→
∨

t1∈T1

∨

t2∈T2
F (x1, x2, y)[t1/x1][t2/x2]

• m quantifiers ∃ . . . ∃ or ∀...∀:

formula size is multiplied by n in each step ⇒ O(nm+1) runtime.

• m quantifiers ∃∀∃∀ . . . ∀: doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant.

An efficient implementation must make use of simplification techniques.

13

Until now

Decidable fragments of first-order logic

Decision procedures for single theories

• UIF

• Numeric domains

Here:

Difference logic

Linear arithmetic over R, Q

Next: Reasoning in combinations of theories

Combinations of decision procedures

14

3.5. Combinations of theories

The combined validity problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σ-formulae

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Problem: Given φ in L1
⊕

L2, is it the case that T1
⊕

T2 |= φ?

15

Problems

The combined decidability problem I

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σ-formulae
• assume the Ti -validity problem for Li is decidable

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Question: Is the T1
⊕

T2-validity problem for L1
⊕

L2 decidable?

16

Problems

The combined decidability problem II

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• let Li be a class of (closed) Σ-formulae
• Pi decision procedure for Ti -validity for Li

Let T1
⊕

T2 be a combination of T1 and T2
Let L1

⊕
L2 be a combination of L1 and L2

Question: Can we combine P1 and P2 modularly into a decision

procedure for the T1
⊕

T2-validity problem for L1
⊕

L2?

Main issue: How are T1
⊕

T2 and L1
⊕

L2 defined?

17

Combinations of theories and models

Forgetting symbols

Let Σ = (Ω,Π) and Σ′ = (Ω′, Π′) s.t. Σ ⊆ Σ′, i.e., Ω ⊆ Ω′ and Π ⊆ Π′

For A ∈ Σ′-alg, we denote by A|Σ the Σ-structure for which:

UA|Σ
= UA, fA|Σ

= fA for f ∈ Ω;

PA|Σ
= PA for P ∈ Π

(ignore functions and predicates associated with symbols in Σ′\Σ)

A|Σ is called the restriction (or the reduct) of A to Σ.

Example: Σ′ = ({+/2, ∗/2, 1/0}, {≤ /2, even/1, odd/1})

Σ = ({+/2, 1/0}, {≤ /2}) ⊆ Σ′

N = (N, +, ∗, 1,≤, even, odd) N|Σ = (N, +, 1,≤)

18

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

where Σ1 ∪ Σ2 = (Ω1, Π1) ∪ (Ω2, Π2) = (Ω1 ∪ Ω2, Π1 ∪ Π2)

19

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

20

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

A ∈ Mod(T1 ∪ T2) iff A |= G , for all G in T1 ∪ T2

iff A|Σi
|= G , for all G in Ti , i = 1, 2

iff A|Σi
∈ Mi , i = 1, 2

iff A ∈ M1 +M2

21

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

Remark: A∈Mod(T1 ∪ T2) iff (A|Σ1
∈Mod(T1) and A|Σ2

∈Mod(T2))

Consequence: Th(Mod(T1 ∪ T2)) = Th(M1 +M2)

22

Example

1. Presburger arithmetic + UIF

Th(Z+) ∪ UIF Σ = (Ω,Π)

Models: (A, 0, s, +, {fA}f∈Ω,≤, {PA}P∈Π)

where (A, 0, s, +,≤) ∈ Mod(Th(Z+)).

2. The theory of reals + the theory of a monotone function f

Th(R) ∪Mon(f) Mon(f) : ∀x , y(x ≤ y → f (x) ≤ f (y))

Models: (A, +, ∗, fA, {≤}), where

where (A, +, ∗,≤) ∈ Mod(Th(R)).

(A, fA,≤) |= Mon(f), i.e. fA : A → A monotone.

Note: The signatures of the two theories share the ≤ predicate symbol

23

Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?

Answer: No. (Not even when the two theories have disjoint signatures)

Example: Σ1 = (Ω1, ∅), Σ2 = ({c/0, d/0}, ∅), c, d 6∈ Ω1

T1 = {∃x , y , z(x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}

T2 = {∀x(x ≈ c ∨ x ≈ d)}

A ∈ Mod(T1) iff |UA| ≥ 3.

B ∈ Mod(T2) iff |UB| ≤ 2.

24

Combinations of theories

The combined decidability problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• assume the Ti ground satisfiability problem
is decidable

Let T1
⊕

T2 be a combination of T1 and T2

Question:

Is the T1
⊕

T2 ground satisfiability problem decidable?

25

Goal: Modularity

Modular Reasoning Example:

T1 T0 T2
T0: Σ0-theory. lists(R) ∪ arrays(R)

Ti : Σi -theory; T0 ⊆ Ti Σ0 ⊆ Σi .

Can use provers for T1, T2 as blackboxes to prove theorems in T1 ∪ T2?

Which information needs to be exchanged between the provers?

26

Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

27

Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for T : Decide if T |= ∀x(s ≈ t)

A: theory of associativity G finite set of ground equations
(presentation for semigroup
with undecidable word problem)

↑
(∃ finitely-presented semigroup with
undecidable word problem [Matijasevic’67])

Word problem: decidable for A,G; undecidable for A ∪ G

28

Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Example. Word problem for T : Decide if T |= ∀x(s ≈ t)

Simpler instances: combinations of theories over disjoint signatures,

theories sharing constructors, compatibility with shared theory ...

29

Combinations of theories

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• s.t. the ground satisfiability problem for Ti is decidable

Question: Is the ground satisfiability problem for T1 ∪ T2 decidable?

In general: No (restrictions needed for affirmative answer)

Theorem [Bonacina, Ghilardi et.al, IJCAR 2006]

There are theories T1, T2 with disjoint signatures and decidable ground satis-

fiability problem such that ground satisfiability in T1 ∪ T2 is undecidable.

Idea: Construct T1 such that ground satisfiability is decidable, but it is

undecidable whether a constraint Γ1 is satisfiable in an infinite model of T1.

(Construction uses Turing Machines). Let T2 having only infinite models.

30

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T

31

Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

32

Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

Problems:

1. R∪L∪E |= ∀x , y(x≤y ∧ y≤x+car(cons(0, x)) ∧ P(h(x)−h(y)) → P(0))

2. Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E?

33

An Example

R L E

Σ {≤, +,−, 0, 1} {car, cdr, cons} F ∪ P

Axioms x + 0 ≈ x car(cons(x , y))≈x

x − x ≈ 0 cdr(cons(x , y))≈y

(univ. + is A,C at(x)∨cons(car(x), cdr(x))≈x

quantif.) ≤ is R,T ,A ¬at(cons(x , y))

x ≤ y ∨ y ≤ x

x≤y→x+z≤y+z

Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E ?

34

Step 1: Purification

Given: φ conjunctive quantifier-free formula over Σ1 ∪ Σ2

Task: Find φ1,φ2 s.t. φi is a pure Σi -formula and φ1 ∧ φ2 equivalent with φ

f (s1, . . . , sn) ≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ u≈g(t1, . . . , tm)

f (s1, . . . , sn) 6≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ v≈g(t1, . . . , tm) ∧ u 6≈ v

(¬)P(. . . , si , . . .) 7→ (¬)P(. . . , u, . . .) ∧ u≈si

(¬)P(. . . , si [t], . . .) 7→ (¬)P(. . . , si [t 7→ u], . . .) ∧ u≈t

where t ≈ f (t1, . . . , tn)

Termination: Obvious

Correctness: φ1 ∧ φ2 and φ equisatisfiable.

35

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)) ∧ ¬P(0)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)
︸ ︷︷ ︸

c2

) ∧ ¬P(0)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

satisfiable satisfiable satisfiable

36

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

deduce and propagate equalities between constants entailed by components

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5

c ≈ d

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

c2 ≈ c5 ⊥

37

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

38

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions

39

Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.

40

Implementation of propagation

Guessing variant

Guess a maximal set of literals containing the shared variables V

(arrangement: α(V ,E) = (
∧

(u,v)∈E u ≈ v ∧
∧

(u,v)6∈E u 6≈ v), where

E equivalence relation); check it for Ti ∪ φi consistency.

On the blackboard: Example 10.5 and 10.7 pages 272, 273

Example 10.6 and 10.9 pages 272, 275

from the book “The Calculus of Computation” by A. Bradley and Z. Manna

Advantage: Whenever constraints are represented as Boolean

combinations of atoms, one may combine heuristics of SMT solvers

with specific features of the theories to be combined to produce the

right arrangement efficiently.

41

