
Decision Procedures for Verification

Combinations of decision procedures (3)

3.02.2015

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

3.6 The DPLL(T) algorithm

2

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

3

SAT Modulo Theories (SMT)

Optimized lazy approach

LA • Check T-consistency only of full propositional models

OLA • Check T-consistency of partial assignment while being built

LA • Given a T-inconsistent assignment M, add ¬M as a clause

OLA • Given a T-inconsistent assignment M, find an explanation

(a small T-inconsistent subset of M) and add it as a clause

LA • Upon a T-inconsistency, add clause and restart

OLA • Upon a T-inconsistency, do conflict analysis of the

explanation and Backjump

4

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT

• Why “lazy”?

Theory information used only lazily, when checking T -consistency of

propositional models

• Characteristics:

+ Modular and flexible

− Theory information does not guide the search

(only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

5

“Lazy” approaches to SMT

Lazy theory learning:

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨ ¬Ln ∨¬L if

M, L,M1 |= F

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

Lazy theory learning + no repetitions

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨¬Ln ∨¬L if

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

¬L1 ∨ · · · ∨ ¬Ln ∨ ¬L 6∈ F

6

DPLL(T) Rules

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , no backtrack possible

Backjump

M, Ld ,N||F ⇒ M, L′||F if

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .
Restart/Learn

M||F ⇒ ∅||F , F ′ if F |= F ′, F ′ obtained from M, F

TPropagation

M||F ⇒ M, L||F if M |=T L

7

DPLL(T) Example

Consider again same example with UIF:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

∅ ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1 ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3P1P2 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1P2P4 ||¬P1 ∨ P2,P3,¬P4 ⇒ fail

No search in this example

8

Termination

Idea: DPLL(T) terminates if no clause is learned infinitely many times,

since only finitely many such new clauses (built over input literals) exist.

Theorem. There exists no infinite sequence of the form

∅||F ⇒ S1 ⇒ S2...

if no clause C is learned by Reset & Learn/Lazy Theory Learning infinitely

many times along a sequence.

A similar termination result holds also for the DPLL(T) approach with

Theory Propagation.

9

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ S2...

Proof. (Idea) We define a well-founded strict partial ordering ≻ on states,

and show that each rule application M||F ⇒ M′||F ′ is decreasing with

respect to this ordering, i.e., M||F ≻ M′||F ′.

Let M be of the form M0, L1,M1, ...Lp ,Mp , where L1, ..., Lp are all the decision literals

of M. Similarly, let M′ be M′

0 , L
′

1,M
′

1 , ...L
′

p′
,M′

p′
.

Let N be the number of distinct atoms (propositional variables) in F .

(Note that p, p′ and the length of M and M′ are always smaller than or equal to N.)

10

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Proof. (continued)

Let m(M) be N − length(M) (nr. of literals missing in M for M to be total).

Define: M0L1M1 . . . LpMp||F ≻ M′

0L
′

1M
′

1 . . . L
′

p′
M′

p′
||F ′ if

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M′

0), ...m(Mi−1) = m(M′

i−1),m(Mi) > m(M′

i) or

(ii) m(M0) = m(M′

0), ...m(Mp) = m(M′

p) and m(M) > m(M′).

Comparing the number of missing literals in sequences is a strict ordering (irreflexive

and transitive) and it is well-founded, and hence this also holds for its lexicographic

extension on tuples of sequences of bounded length.

No learning/forgetting: It is easy to see that all Basic DPLL rule applications are

decreasing with respect to ≻ if fail is added as an additional minimal element. (The

rules UnitPropagate and Backjump decrease by case (i) of the definition and Decide

decreases by case (ii).)

11

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Note: Combine learning with basic DPLL(T): no clause learned infinitely many times.

Forget: For this termination condition to be fulfilled, applying at least one rule of the

Basic DPLL system between any two Learn applications does not suffice. It suffices if,

in addition, no clause generated with Learning is ever forgotten.

12

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′ then:

(1) All atoms in M and all atoms in F ′ are atoms of F .

(2) M: no literal more than once, no complementary literals

(3) F ′ is logically equivalent to F

(4) if M = M0L1M1 . . . LnMn where Li all decision literals

then F , L1, . . . , Li |= Mi .

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then:

(1) All literals of F ′ are defined in M

(2) There is no clause C in F ′ such that M |= ¬C

(3) M is a model of F .

13

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

(1) If ∅||F ⇒∗ fail then there exists state M||F ′ with ∅||F ⇒∗ M||F ′ ⇒ fail , there

is no decision literal in M and M |= ¬C for some clause C in F . By the construction

of M, F |= M, so F |= ¬C . Thus F is unsatisfiable.

To prove the converse, if ∅||F 6⇒∗ fail then by there must be a state M||F ′ such that

∅||F ⇒∗ M||F ′. Then M |= F , so F is satisfiable.

14

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

2. If ∅||F ⇒∗ M||F then F is satisfiable. Conversely, if ∅||F 6⇒∗ M||F then

∅||F ⇒∗ fail , so F is unsatisfiable.

15

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Lemma. If ∅||F ⇒ M||F then M is T -consistent.

Proof. This property is true initially, and all rules preserve it, by the fact

that M |=T L if, and only if, M ∪ ¬L is T -inconsistent: the rules only

add literals to M that are undefined in M, and Theory Propagate adds all

literals L of F that are theory consequences of M, before any literal ¬L

making it T -inconsistent can be added to M by any of the other rules.

16

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Definition. A DPLL(T) procedure with Eager Theory Propagation for T is

any procedure taking an input CNF F and computing a sequence ∅||F ⇒∗ S

where S is a final state wrt. Theory Propagate and the Basic DPLL system.

Theorem The DPLL system with eager theory propagation provides a

decision procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, if, and only if, F is satisfiable in T .

3. If ∅||F ⇒ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, then M is a T -model of F .

17

Literature

Full proofs and further details can be found in:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli:

“Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-

Logemann-Loveland Procedure to DPLL(T)”

Journal of the ACM, Vol. 53, No. 6, November 2006, pp.937-977.

18

SMT tools

SAT problems

Given: conjunction φ of prop. clauses
Task: check if φ satisfiable

Method: DPLL
• deterministic choices first

unit resolution
pure literal assignment

• case distinction (splitting)
• heuristics

selection criteria for splitting
backtracking
conflict-driven learning

19

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

20

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

Systems implementing such satisfiability problems: Z3, Yices, Barcelogic Tools,

CVC, haRVey, Math-SAT, ... are called (S)atisfiability (M)odulo (T)heory solvers.

21

Satisfiability of formulae with quantifiers

22

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae

containing (universally quantified) variables.

Examples

• check satisfiability of formulae in the Bernays-Schönfinkel class

• check whether a set of (universally quantified) Horn clauses

entails a ground clause

• check whether a property is consequence of a set of axioms

Example 1: f : Z → Z is monotonely increasing

and g : Z → Z is defined by g(x) = f (x + x)

then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and

x is inserted before the first position i with a[i] > x

then the array remains increasingly sorted.

23

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

• Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).

• Function symbols: read, write.

a(read) = Array × Index → Element

a(write) = Array × Index × Element → Array

24

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

25

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

26

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form

t ≤ u or t = u where t and u are either a variable or a ground term of

sort Index

Example: (x ≤ 3 ∨ x ≈ y) ∧ y ≤ z is an index guard

Example: x + 1 ≤ c, x + 3 ≤ y , x + x ≤ 2 are not index guards.

• Array property formula [Bradley,Manna,Sipma’06]

(∀i)(ϕI (i) → ϕV (i)), where:

ϕI : index guard

ϕV : formula in which any universally quantified i occurs in a direct

array read; no nestings

Example: c ≤ x ≤ y ≤ d → a(x) ≤ a(y) is an array property formula

Example: x < y → a(x) < a(y) is not an array property formula

27

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a′ (write)

Given a formula F containing an occurrence of a write term write(a, i , v),

we can substitute every occurrence of write(a, i , v) with a fresh variable a′

and explain the relationship between a′ and a.

28

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential

quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula

contains a negated array property.

29

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite

conjunction.

The main idea is to select a set of symbolic index terms on which to

instantiate all universal quantifiers.

30

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set I:

I = {λ}∪

{t | ·[t] ∈ F3 such that t is not a universally quantified variable}∪

{t | t occurs as an evar in the parsing of index guards}

(evar is any constant, ground term, or unquantified variable.)

This index set is the finite set of indices that need to be examined. It

includes all terms t that occur in some read(a, t) anywhere in F (unless it

is a universally quantified variable) and all terms t that are compared to a

universally quantified variable in some index guard.

λ is a fresh constant that represents all other index positions that are not

explicitly in I.

31

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal

quantification:

H[∀i .F [i] → G [i]]

H
[∧

i∈In (F [i] → G [i])
] (forall)

where n is the size of the list of quantified variables i .

This is the key step.

It replaces universal quantification with finite conjunction over the index

set. The notation i ∈ In means that the variables i range over all n-tuples

of terms in I.

32

Theories of arrays

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

The new conjuncts assert that the variable λ introduced in Step 4 is unique:

it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for

the quantifier free fragment.

33

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

It contains one array property,

∀i .i 6= l → a[i] = b[i]

index guard: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

Step 1: The formula is already in NNF.

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

34

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

index guards: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

i 6= l := (j ≤ l − 1 ∨ j ≥ l + 1) value constraint: a[i] = a′ [j]

Step 3: F2 does not contain any existential quantifiers 7→ F3 = F2.

Step 4: The index set is

I = {λ} ∪ {k} ∪ {l , l − 1, l + 1} = {λ, k, l , l − 1, l + 1}

35

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 3:

F3 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

Step 4: I = {λ, k, l , l − 1, l + 1}

Step 5: we replace universal quantification as follows:

F5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧
∧

i∈I

(i 6= l → a[i] = b[i])

∧a′[l] = v ∧
∧

i∈I

(j 6= l → a[j] = a′[j]).

36

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ, k, l , l − 1, l + 1}

Step 5 (continued) Expanding produces:

F5′ : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧

(λ 6= l → a[λ] = b[λ]) ∧ (k 6= l → a[k] = b[k]) ∧ (l 6= l → a[l] = b[l]) ∧

(l − 1 6= l → a[l − 1] = b[l − 1]) ∧ (l + 1 6= l → a[l + 1] = b[l + 1]) ∧

a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ]) ∧ (k 6= l → a[k] = a′[k]) ∧

(l 6= l → a[l] = a′[l]) ∧ (l − 1 6= l → a[l − 1] = a′[l − 1]) ∧

(l + 1 6= l → a[l + 1] = a′[l + 1]).

37

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ} ∪ {k} ∪ {l} = {λ, k, l}

Step 5 (continued): Simplifying produces

F ′′5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1].

38

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 distinguishes λ from other members of I:

F6 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

39

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 Simplifying, we have

F
′6 : a

′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ a[λ] = b[λ]

∧a[k] = b[k] ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a
′

[l] = v ∧ a[λ] = a
′

[λ]

∧(k 6= l → a[k] = a
′[k]) ∧ a[l − 1] = a

′[l − 1] ∧ a[l + 1] = a
′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

We can use for instance DPLL(T).

Alternative: Case distinction. There are two cases to consider.

(1) If k=l , then a′[l]=v and a′[k]=b[k] imply b[k]=v , yet b[k]6=v .

(2) If k 6=l , then a[k]=v and a[k]=b[k] imply b[k]=v , but again b[k]6=v .

Hence, F’6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

40

