Decision Procedures for Verification

Decision Procedures (1)

$$
16.12 .2014
$$

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Exam

Several possibilities:
Friday, 27.02.2015
Thursday, 12.03.2015
Friday, 13.03.2015

Chosen:
Thursday, 12.03.2015, 13:00-15:00

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)
Semantics
Structures (also many-sorted)
Models, Validity, and Satisfiability
Entailment and Equivalence
Theories (Syntactic vs. Semantics view)
Algorithmic Problems: Check satisfiability

Until now:

Normal Forms

Herbrand Models

Resolution

- Soundness, refutational completeness, refinements
- Consequences: Compactness of FOL; The Löwenheim-Skolem Theorem; Craig interpolation

Decidable subclasses of FOL
The Bernays-Schönfinkel class
(definition; decidability;tractable fragment: Horn clauses)
The Ackermann class

Today

The monadic class
Decision procedures
Congruence closure

The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely relational signatures $\Sigma=(\Omega, \Pi)$, where $\Omega=\emptyset$, and every $p \in \Pi$ has arity 1 .

Abstract syntax:
$\Phi:=\top|P(x)| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \forall x \Phi \quad\left|\Phi_{1} \vee \Phi_{2}\right| \Phi_{1} \rightarrow \Phi_{2}\left|\Phi_{1} \leftrightarrow \Phi_{2}\right| \exists \Phi$
Idea. Let Φ be a MFO formula with k predicate symbols.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}\right\}_{p \in \Pi}\right)$ be a Σ-algebra. The only way to distinguish the elements of $U_{\mathcal{A}}$ is by the atomic formulae $p(x), p \in \Pi$.

- the elements which $a \in U_{\mathcal{A}}$ which belong to the same $p_{\mathcal{A}}$'s, $p \in \Pi$ can be collapsed into one single element.
- if $\Pi=\left\{p^{1}, \ldots, p^{k}\right\}$ then what remains is a finite structure with at most 2^{k} elements.
- the truth value of a formula: computed by evaluating all subformulae.

The Monadic Class

MFO Abstract syntax: $\Phi:=\top|P(x)| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \forall x \Phi$
Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^{k}$.

Proof: Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

The Monadic Class

MFO Abstract syntax: $\Phi:=\top|P(x)| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \forall x \Phi$
Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^{k}$.

Proof: Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right)(\Phi)=\mathcal{A}(\beta)(\Phi)$.

The Monadic Class

To show:
$\left(\mathcal{A}(\beta)(\Phi)=\mathcal{B}^{\prime}(\beta \circ h)(\Phi)\right.$.
Induction on the structure of Φ
Induction base: Show that claim is true for all atomic formulae

- $\Phi=$ T OK
- $\Phi=p^{i}(x)$.

Then the following are equivalent:
(1) $(\mathcal{A}, \beta) \models \Phi$
(2) $\beta(x) \in p_{\mathcal{A}}^{i}$
(3) $h(\beta(x)) \in p_{\mathcal{B}}^{i}$
(4) $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$
(definition)
(definition of h and of $p_{\mathcal{B}}^{i}$)
(definition)

The Monadic Class

Induction on the structure of Φ
Let Φ be a formula which is not atomic.
Assume statement holds for the (direct) subformulae of Φ. Prove that it holds for Φ.

- $\Phi=\Phi_{1} \wedge \Phi_{2}$

Assume $(\mathcal{A}, \beta) \models \Phi$. Then $(\mathcal{A}, \beta) \models \Phi_{i}, i=1,2$.
By induction hypothesis, $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi_{i}, i=1,2$.
Thus, $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi=\Phi_{1} \wedge \Phi_{2}$
The converse can be proved similarly.

- $\Phi=\neg \Phi_{1}$

The following are equivalent:
(1) $(\mathcal{A}, \beta) \models \Phi=\neg \Phi_{1}$.
(2) $\mathcal{A}(\beta)\left(\Phi_{1}\right)=0$
(3) $\mathcal{B}^{\prime}(\beta \circ h)\left(\Phi_{1}\right)=0$
(4) $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi=\neg \Phi_{1}$

The Monadic Class

- $\Phi=\forall x \Phi_{1}(x)$.

Then the following are equivalent:
(1) $(\mathcal{A}, \beta) \models \Phi$
(2) $\mathcal{A}(\beta[x \mapsto a])\left(\Phi_{1}\right)=1$ for all $a \in U_{\mathcal{A}}$
(3) $\mathcal{B}^{\prime}(\beta[x \mapsto a] \circ h)\left(\Phi_{1}\right)=1$ for all $a \in U_{\mathcal{A}}$
(ind. hyp)
(4) $\mathcal{B}^{\prime}(\beta \circ h[x \mapsto b])\left(\Phi_{1}\right)=1$ for all $b \in\{0,1\}^{k} \cap h(A)$
(5) $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$

The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several other classes):

William H. Joyner Jr.
Resolution Strategies as Decision Procedures.
J. ACM 23(3): 398-417 (1976)

Idea:

- Use orderings to restrict the possible inferences
- Identify a class of clauses (with terms of bounded depth) which contains the type of clauses generated from the respective fragment and is closed under ordered resolution (+ red. elim. criteria)
- Show that a saturation of the clauses can be obtained in finite time

The Monadic Class

Resolution-based decision procedure for the Monadic Class:
$\Phi: \quad \forall \bar{x}_{1} \exists \bar{y}_{1} \ldots \forall \bar{x}_{k} \exists \bar{y}_{k}\left(\ldots . p^{s}\left(x_{i}\right) \ldots \ldots p^{\prime}\left(y_{i}\right) \ldots\right)$
$\mapsto \quad \forall \bar{x}_{1} \ldots \forall \bar{x}_{k}\left(\ldots p^{s}\left(x_{i}\right) \ldots p^{\prime}\left(f_{\text {sk }}\left(\bar{x}_{1}, \ldots, \bar{x}_{i}\right) \ldots\right)\right.$
Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears
- each variable-disjoint partition has at most $n=\sum_{i=1}\left|\bar{x}_{i}\right|$ variables (can order the variables as x_{1}, \ldots, x_{n})
- the variables of each non-ground block can occur either in atoms $p\left(x_{i}\right)$ or in atoms $P\left(f_{\text {sk }}\left(x_{1}, \ldots, x_{t}\right)\right), 0 \leq t \leq n$

It can be shown that this class contains all CNF's of formulae in the monadic class and is closed under ordered resolution.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x *(x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x \in(x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?
Alternative question:
Is $\forall x, y(x * y=y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ-formulae.
the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \vDash G$, for all G in $\mathcal{F}\}$

Semantic view

given a class \mathcal{M} of Σ-algebras
the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$

Decidable theories

Let $\Sigma=(\Omega, \Pi)$ be a signature.
\mathcal{M} : class of Σ-algebras. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)

Peano arithmetic

$$
\begin{array}{llr}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) & \text { (zero) } \tag{zero}\\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
& \forall x(x+0 \approx x) & \text { (plus zero) } \\
& \forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
& \forall x, y(x * 0 \approx 0) & \text { (times 0) } \\
& \forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) } \\
3 * y+5>2 * y \text { expressed as } \exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Goedel's incompleteness theorem)

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language
$\{(G(M), w) \mid G(M)$ is the Gödelisation of a TM M that accepts the string $w\}$

As the latter problem is undecidable, this will show that P cannot exist.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)
Idea of undecidability proof: (ctd)
(1) For $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$ and Peano arithmetic:
multiplication can be used for modeling Gödelisation
(2) For $\operatorname{Th}(\Sigma$-alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$
Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

\mathcal{T} : first-order theory in signature $\Sigma ; \mathcal{L}$ class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem Th $_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\} \quad$ clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\} \quad$ universal validity problem Th_{\forall}
$\mathcal{L}=\left\{\exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification problem $\quad \mathrm{Th}_{\exists}$
$\mathcal{L}=\left\{\forall x \exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification with constants $\mathrm{Th}_{\forall \exists}$

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:
\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ-formulae

$$
\neg \mathcal{L}=\{\neg \phi \mid \phi \in \mathcal{L}\}
$$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

$$
\begin{array}{lll}
\mathcal{T} \equiv \forall x A(x) & \text { iff } & \mathcal{T} \cup \exists x \neg A(x) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(A_{1} \wedge \cdots \wedge A_{n} \rightarrow B\right) & \text { iff } & \mathcal{T} \cup \exists x\left(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\right) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(\bigvee_{i=1}^{n} A_{i} \vee \bigvee_{j=1}^{m} \neg B_{j}\right) & \text { iff } & \mathcal{T} \cup \exists x\left(\neg A_{1} \wedge \cdots \wedge \neg A_{n} \wedge B_{1} \wedge \cdots \wedge B_{m}\right) \\
& & \text { unsatisfiable }
\end{array}
$$

\mathcal{T}-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems
But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T}.
- in \mathcal{T}-satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
(approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program
1: y := 1
2: if $\mathrm{z}=\mathrm{x} * \mathrm{x} * \mathrm{x}$
3: then $y:=x * x+y$
4: endif

1: y := 1
2: R1 := x*x
3: R2 := R1*x
4: jmpNE(z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow \quad x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties).
Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of $*$.
(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\mathrm{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable

Decidable fragment:

e.g. the class $\mathrm{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Uninterpreted function symbols

Assume $\Pi=\emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $\operatorname{UIF}(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Solution 1

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime} t(\bar{x})\right)$

Solution 1:

The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i} \approx t_{i}\right) \rightarrow \bigvee_{j} s_{j}^{\prime} \approx t_{j}^{\prime}$ is valid
(2) $E q(\sim) \wedge \operatorname{Con}(f) \wedge\left(\bigwedge_{i} s_{i} \sim t_{i}\right) \wedge\left(\bigwedge_{j} s_{j}^{\prime} \nsim t_{j}^{\prime}\right)$ is unsatisfiable.
where $E q(\sim): \operatorname{Refl}(\sim) \wedge \operatorname{Sim}(\sim) \wedge \operatorname{Trans}(\sim)$
$\operatorname{Con}(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(\bigwedge x_{i} \sim y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)$

Resolution: inferences between transitivity axioms - nontermination

Solution 2

Task:

Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
Solution 2: Ackermann's reduction.
Flatten the formula (replace, bottom-up, $f(c)$ with a new constant c_{f} $\phi \mapsto F L A T(\phi)$

Theorem 3.3.2: The following are equivalent:
(1) $\quad\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})$ is satisfiable
(2) $F C \wedge F L A T\left[\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right]$ is satisfiable where $F C=\left\{c_{1}=d_{1}, \ldots c_{n}=d_{n} \rightarrow c_{f}=d_{f} \mid\right.$ whenever $f\left(c_{1}, \ldots, c_{n}\right)$ was renamed to c_{f} $f\left(d_{1}, \ldots, d_{n}\right)$ was renamed to $\left.d_{f}\right\}$

Note: The problem is decidable in PTIME (see next pages)
Problem: Naive handling of transitivity/congruence axiom $\mapsto O\left(n^{3}\right)$
Goal: Give a faster algorithm

Example

The following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $F C \wedge F L A T[C]$ is satisfiable, where:
$\operatorname{FLAT}[f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

- $\operatorname{FLAT}[\underbrace{f(a, b)}_{a_{1}} \approx a \wedge f \underbrace{f(a, b)}_{a_{1}}, b) \not \underbrace{f(a, b]:=a_{1} \approx a \wedge a_{2} \not \approx a . ~}$

$$
\begin{aligned}
f(a, b) & =a_{1} \\
f\left(a_{1}, b\right) & =a_{2}
\end{aligned}
$$

- $F C:=\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)^{a_{2}}$

Thus, the following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $\underbrace{\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)}_{F C} \wedge \underbrace{a_{1} \approx a \wedge a_{2} \not \approx a}_{F L A T[C]}$ is satisfiable

Solution 3

Next time

Next lectures

Thursday, January 8, 2015
Tuesday, January 13, 2015

