Decision Procedures for Verification

Decision Procedures (1)

16.12.2014

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Exam

Several possibilities:

Friday, 27.02.2015

Thursday, 12.03.2015

Friday, 13.03.2015

Chosen:

Thursday, 12.03.2015, 13:00-15:00

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems: Check satisfiability

Until now:

Normal Forms

Herbrand Models

Resolution

- Soundness, refutational completeness, refinements
- Consequences: Compactness of FOL; The Löwenheim-Skolem Theorem;
 Craig interpolation

Decidable subclasses of FOL

```
The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses)

The Ackermann class
```

Today

The monadic class
Decision procedures
Congruence closure

Monadic first-order logic (MFO) is FOL (without equality) over purely relational signatures $\Sigma = (\Omega, \Pi)$, where $\Omega = \emptyset$, and every $p \in \Pi$ has arity 1.

Abstract syntax:

$$\Phi := \top \mid P(x) \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \forall x \Phi \quad \mid \Phi_1 \lor \Phi_2 \mid \Phi_1 \to \Phi_2 \mid \Phi_1 \leftrightarrow \Phi_2 \mid \exists \Phi$$

Idea. Let Φ be a MFO formula with k predicate symbols.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}\}_{p \in \Pi})$ be a Σ -algebra. The only way to distinguish the elements of $U_{\mathcal{A}}$ is by the atomic formulae p(x), $p \in \Pi$.

- the elements which $a \in U_A$ which belong to the same p_A 's, $p \in \Pi$ can be collapsed into one single element.
- if $\Pi = \{p^1, \dots, p^k\}$ then what remains is a *finite structure* with at most 2^k elements.
- the truth value of a formula: computed by evaluating all subformulae.

MFO Abstract syntax:
$$\Phi := \top \mid P(x) \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \forall x \Phi$$

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^k$.

Proof: Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \dots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \dots, b_k) \mid b_i = 1\}$. Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\})$, $\beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$. We construct a model for Φ with cardinality at most 2^k as follows:

- Let $h: A \to B$ be defined for all $a \in U_A$ by:
 - $h(a)=(b_1,\ldots,b_k)$ where $b_i=1$ if $a\in p_\mathcal{A}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all i = 1, ..., k.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$.

MFO Abstract syntax:
$$\Phi := \top \mid P(x) \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \forall x \Phi$$

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^k$.

Proof: Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \dots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \dots, b_k) \mid b_i = 1\}$. Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\})$, $\beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$. We construct a model for Φ with cardinality at most 2^k as follows:

- Let $h: A \to B$ be defined for all $a \in U_A$ by:
 - $h(a)=(b_1,\ldots,b_k)$ where $b_i=1$ if $a\in p_\mathcal{A}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all i = 1, ..., k.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h)(\Phi) = \mathcal{A}(\beta)(\Phi)$. Structural induction

To show:

$$(\mathcal{A}(\beta)(\Phi) = \mathcal{B}'(\beta \circ h)(\Phi).$$

Induction on the structure of Φ

Induction base: Show that claim is true for all atomic formulae

- $\Phi = \top OK$
- $\bullet \quad \Phi = p^i(x).$

Then the following are equivalent:

(1)
$$(A, \beta) \models \Phi$$

(2)
$$\beta(x) \in p_{\mathcal{A}}^{i}$$
 (definition)

(3)
$$h(\beta(x)) \in p_{\mathcal{B}}^i$$
 (definition of h and of $p_{\mathcal{B}}^i$)

$$(4) (B', \beta \circ h) \models \Phi$$
 (definition)

Induction on the structure of Φ

Let Φ be a formula which is not atomic.

Assume statement holds for the (direct) subformulae of Φ . Prove that it holds for Φ .

 $\bullet \quad \Phi = \Phi_1 \wedge \Phi_2$

Assume $(A, \beta) \models \Phi$. Then $(A, \beta) \models \Phi_i$, i = 1, 2.

By induction hypothesis, $(\mathcal{B}', \beta \circ h) \models \Phi_i$, i = 1, 2.

Thus, $(\mathcal{B}', \beta \circ h) \models \Phi = \Phi_1 \wedge \Phi_2$

The converse can be proved similarly.

 $\bullet \quad \Phi = \neg \Phi_1$

The following are equivalent:

- (1) $(A, \beta) \models \Phi = \neg \Phi_1$.
- (2) $\mathcal{A}(\beta)(\Phi_1) = 0$
- (3) $\mathcal{B}'(\beta \circ h)(\Phi_1) = 0$

(4) $(\mathcal{B}', \beta \circ h) \models \Phi = \neg \Phi_1$

• $\Phi = \forall x \Phi_1(x)$.

Then the following are equivalent:

(1)
$$(A, \beta) \models \Phi$$

(2)
$$\mathcal{A}(\beta[x\mapsto a])(\Phi_1)=1$$
 for all $a\in U_{\mathcal{A}}$

(3)
$$\mathcal{B}'(\beta[x \mapsto a] \circ h)(\Phi_1) = 1$$
 for all $a \in U_A$

(4)
$$\mathcal{B}'(\beta \circ h[x \mapsto b])(\Phi_1) = 1$$
 for all $b \in \{0, 1\}^k \cap h(A)$

(5)
$$(\mathcal{B}', \beta \circ h) \models \Phi$$

(ind. hyp)

Resolution-based decision procedure for the Monadic Class (and for several other classes):

William H. Joyner Jr.

Resolution Strategies as Decision Procedures.

J. ACM 23(3): 398-417 (1976)

Idea:

- Use orderings to restrict the possible inferences
- Identify a class of clauses (with terms of bounded depth) which contains the type of clauses generated from the respective fragment and is closed under ordered resolution (+ red. elim. criteria)
- Show that a saturation of the clauses can be obtained in finite time

Resolution-based decision procedure for the Monadic Class:

$$\Phi: \quad \forall \overline{x}_1 \exists \overline{y}_1 \dots \forall \overline{x}_k \exists \overline{y}_k (\dots p^s(x_i) \dots p^l(y_i) \dots)$$

$$\mapsto \quad \forall \overline{x}_1 \dots \forall \overline{x}_k (\dots p^s(x_i) \dots p^l(f_{sk}(\overline{x}_1, \dots, \overline{x}_i) \dots)$$

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears
- each variable-disjoint partition has at most $n = \sum_{i=1}^{n} |\overline{x}_i|$ variables (can order the variables as x_1, \ldots, x_n)
- the variables of each non-ground block can occur either in atoms $p(x_i)$ or in atoms $P(f_{sk}(x_1, ..., x_t))$, $0 \le t \le n$

It can be shown that this class contains all CNF's of formulae in the monadic class and is closed under ordered resolution.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\{e/0, */2, i/1\}, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \qquad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \qquad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\{e/0, */2, i/1\}, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \qquad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \qquad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Alternative question:

Is $\forall x, y(x * y = y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae.

the models of \mathcal{F} : $\mathsf{Mod}(\mathcal{F}) = \{ \mathcal{A} \in \Sigma \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F} \}$

Semantic view

given a class ${\mathcal M}$ of Σ -algebras

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Decidable theories

Let $\Sigma = (\Omega, \Pi)$ be a signature.

 \mathcal{M} : class of Σ -algebras. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

 \mathcal{F} : class of (closed) first-order formulae.

The theory $\mathcal{T} = \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Undecidable theories

- ulletTh((\mathbb{Z} , {0, 1, +, *}, { \leq }))
- Peano arithmetic
- ulletTh(Σ -alg)

Peano arithmetic

Peano axioms:
$$\forall x \neg (x+1 \approx 0)$$
 (zero) $\forall x \forall y \ (x+1 \approx y+1 \rightarrow x \approx y)$ (successor) $F[0] \land (\forall x \ (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$ (induction) $\forall x \ (x+0 \approx x)$ (plus zero) $\forall x, y \ (x+(y+1) \approx (x+y)+1)$ (plus successor) $\forall x, y \ (x*0 \approx 0)$ (times 0) $\forall x, y \ (x*(y+1) \approx x*y+x)$ (times successor) $3*y+5>2*y$ expressed as $\exists z \ (z \neq 0 \land 3*y+5 \approx 2*y+z)$

Intended interpretation: (
$$\mathbb{N}$$
, $\{0, 1, +, *\}$, $\{\approx, \leq\}$) (does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable theories

- $\bullet \mathsf{Th}((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language

 $\{(G(M), w)|G(M) \text{ is the G\"{o}delisation of a TM } M \text{ that accepts the string w } \}$

As the latter problem is undecidable, this will show that P cannot exist.

Undecidable theories

- $\bullet Th((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: (ctd)

(1) For Th((\mathbb{Z} , {0, 1, +, *}, { \leq })) and Peano arithmetic:

multiplication can be used for modeling Gödelisation

(2) For Th(Σ -alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29] Signature: $(\{0, 1, +\}, \{\approx, \leq\})$ (no *)

 Axioms $\{$ (zero), (successor), (induction), (plus zero), (plus successor) $\}$
- Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L}=\{\forall x A(x) \mid A \text{ atomic}\}$	word problem	
$\mathcal{L}=\{\forall x(A_1\wedge\ldots\wedge A_n\rightarrow B)\mid A_i, B \text{ atomic}\}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	$Th_{\forall,cl}$
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	$Th_{orall}$
$\mathcal{L}=\{\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L}=\{\forall x\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification with constants	$Th_{\forall\exists}$

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 \mathcal{T} -satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae $\neg \mathcal{L} = \{ \neg \phi \mid \phi \in \mathcal{L} \}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \wedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \wedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

$$\mathcal{T} \models \forall x A(x) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x \neg A(x) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (A_1 \wedge \cdots \wedge A_n \rightarrow B) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (A_1 \wedge \cdots \wedge A_n \wedge \neg B) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (\bigvee_{i=1}^n A_i \vee \bigvee_{j=1}^m \neg B_j) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (\neg A_1 \wedge \cdots \wedge \neg A_n \wedge B_1 \wedge \cdots \wedge B_m)$$

$$\text{unsatisfiable}$$

\mathcal{T} -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems But be careful:

- ullet in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T} .
- ullet in \mathcal{T} -satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1 2: if z = x*x*x 3: then y := x*x + y 4: endif 2: R1 := x*x 3: R2 := R1*x 4: jmpNE(z,R2,6) 5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$y_{1} \approx 1 \wedge [(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0} + y_{1}) \vee (z_{0} \not\approx x_{0} * x_{0} \wedge x_{0} \wedge y_{3} \approx y_{1})] \wedge$$

$$y'_{1} \approx 1 \wedge R1_{2} \approx x'_{0} * x'_{0} \wedge R2_{3} \approx R1_{2} * x'_{0} \wedge$$

$$\wedge [(z'_{0} \approx R2_{3} \wedge y'_{5} \approx R1_{2} + 1) \vee (z'_{0} \neq R2_{3} \wedge y'_{5} \approx y'_{1})] \wedge$$

$$x_{0} \approx x'_{0} \wedge y_{0} \approx y'_{0} \wedge z_{0} \approx z'_{0} \implies x_{0} \approx x'_{0} \wedge y_{3} \approx y'_{5} \wedge z_{0} \approx z'_{0}$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma$ -alg be the class of all Σ -structures

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $\mathsf{Th}_\forall(\Sigma\text{-alg})$ of all universal formulae which are true in all $\Sigma\text{-algebras}$.

Uninterpreted function symbols

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $\mathsf{Free}(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Solution 1

Task:

Check if
$$UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \wedge \cdots \wedge s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s_j'(\overline{x}) \approx t_j't(\overline{x}))$$

Solution 1:

The following are equivalent:

- (1) $(\bigwedge_i s_i \approx t_i) \rightarrow \bigvee_i s_i' \approx t_i'$ is valid
- (2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_i s_i \sim t_i) \wedge (\bigwedge_j s_j' \not\sim t_j')$ is unsatisfiable.

where
$$Eq(\sim)$$
: Refl $(\sim) \land Sim(\sim) \land Trans(\sim)$
Con (f) : $\forall x_1, \ldots, x_n, y_1, \ldots, y_n(\bigwedge x_i \sim y_i \rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n))$

Resolution: inferences between transitivity axioms - nontermination

Solution 2

Task:

Check if
$$UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s_j'(\overline{x}) \approx t_j'(\overline{x}))$$

Solution 2: Ackermann's reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant c_f $\phi \mapsto FLAT(\phi)$

Theorem 3.3.2: The following are equivalent:

- (1) $(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})$ is satisfiable
- (2) $FC \wedge FLAT[(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \wedge \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})]$ is satisfiable

where
$$FC = \{c_1 = d_1, \ldots c_n = d_n \to c_f = d_f \mid \text{ whenever } f(c_1, \ldots, c_n) \text{ was renamed to } c_f \ f(d_1, \ldots, d_n) \text{ was renamed to } d_f \}$$

Note: The problem is decidable in PTIME (see next pages)

Problem: Naive handling of transitivity/congruence axiom $\mapsto O(n^3)$

Goal: Give a faster algorithm

The following are equivalent:

- (1) $C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$ is satisfiable
- (2) $FC \wedge FLAT[C]$ is satisfiable, where:

 $FLAT[f(a,b) \approx a \land f(f(a,b),b) \not\approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

•
$$FLAT[f(a,b) \approx a \land f(f(a,b),b) \not\approx a] := a_1 \approx a \land a_2 \not\approx a$$

$$f(a,b) = a_1$$

$$f(a_1,b) = a_2$$
• $FC := (a \approx a_1 \rightarrow a_1 \approx a_2)$

Thus, the following are equivalent:

(1)
$$C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$$
 is satisfiable

(2)
$$\underbrace{(a \approx a_1 \rightarrow a_1 \approx a_2)}_{FC} \land \underbrace{a_1 \approx a \land a_2 \not\approx a}_{FLAT[C]}$$
 is satisfiable

Solution 3

Next time

Next lectures

Thursday, January 8, 2015

Tuesday, January 13, 2015