
Decision Procedures for Verification

Decision Procedures (2)

8.01.2015

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Exam

Thursday, 12.03.2015, 13:00-15:00

2

Until now:

Decision Procedures

• Uninterpreted functions

congruence closure

3

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning

- Applications to program verification

(approximation: abstract from additional properties)

4

Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers)

y1 ≈ 1 ∧ [(z0 ≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ x0 ∗ x0 + y1) ∨ (z0 6≈ x0 ∗ x0 ∗ x0 ∧ y3 ≈ y1)]∧

y ′

1 ≈ 1 ∧ R12 ≈ x′0 ∗ x′0 ∧ R23 ≈ R12 ∗ x′0∧

∧ [(z′0 ≈ R23 ∧ y ′

5 ≈ R12 + 1) ∨ (z′0 6= R23 ∧ y ′

5 ≈ y ′

1)]∧

x0 ≈ x′0 ∧ y0 ≈ y ′

0 ∧ z0 ≈ z′0 =⇒ x0 ≈ x′0 ∧ y3 ≈ y ′

5 ∧ z0 ≈ z′0

5

Possibilities for checking it

(1) Abstraction.

Consider ∗ to be a “free” function symbol (forget its properties).

Test it property can be proved in this approximation. If so,

then we know that implication holds also under the normal

interpretation of ∗.

(2) Reasoning about formulae in fragments of arithmetic.

6

Uninterpreted function symbols

Let Σ = (Ω, Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family of all first-order

formulae which are true in all Σ-algebras.

in general undecidable

Decidable fragment:

e.g. the class Th∀(Σ-alg) of all universal formulae which are true in all Σ-algebras.

Assume Π = ∅ (and ≈ is the only predicate)

In this case we denote the theory of uninterpreted function symbols by UIF (Σ) (or

UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)

7

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

(1) testing validity of universal formulae w.r.t. UIF is decidable

(2) testing validity of (universally quantified) clauses w.r.t. UIF is

decidable

(3) testing satisfiability of conjunctions of literals w.r.t. UIF is decidable

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j t(x))

8

Solutions

Solution 1. The following are equivalent:

(1) (
∧

i si ≈ ti) →
∨

j s
′

j ≈ t′j is valid

(2) Eq(∼) ∧ Con(f) ∧ (
∧

i si∼ti) ∧ (
∧

j s
′

j 6∼ t′j) is unsatisfiable.

where Eq(∼) : Refl(∼) ∧ Sim(∼) ∧ Trans(∼)

Con(f) : ∀x1, . . . , xn, y1, . . . , yn(
∧

xi∼yi→f (x1, . . . , xn) ∼ f (y1, . . . , yn))

Disadvantage: Resolution inferences between transitivity axioms – nontermination

Solution 2. Ackermann’s reduction: Flatten the formula (replace, bottom-up, f (c) with

a new constant cf) φ 7→ FLAT (φ)

Theorem 3.3.2: The following are equivalent:

(1) (
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c) is satisfiable

(2) FC ∧ FLAT [(
∧

i si (c) ≈ ti (c)) ∧
∧

j s
′

j (c) 6≈ t′j (c)] is satisfiable

where FC = {c1≈d1, . . . cn≈dn → cf ≈df | if f (c1, . . . , cn) was renamed to cf

f (d1, . . . , dn) was renamed to df }

Note: The problem is decidable in PTIME

Problem: Handling of transitivity/congruence axiom 7→ O(n3)

9

Example
The following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a is satisfiable

(2) FC ∧ FLAT [C] is satisfiable, where:

FLAT [f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a] is computed by introducing new constants

renaming terms starting with f and then replacing in C the terms with the constants:

• FLAT [f (a, b)
︸ ︷︷ ︸

a1

≈ a ∧ f (f (a, b)
︸ ︷︷ ︸

a1

, b)

︸ ︷︷ ︸

a2

6≈ a] := a1 ≈ a ∧ a2 6≈ a

f (a, b)=a1

f (a1, b)=a2

• FC := (a ≈ a1 → a1 ≈ a2)

Thus, the following are equivalent:

(1) C := f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a is satisfiable

(2) (a ≈ a1 → a1 ≈ a2)
︸ ︷︷ ︸

FC

∧ a1 ≈ a ∧ a2 6≈ a
︸ ︷︷ ︸

FLAT [C]

is satisfiable

Problems: Handling ≈; Redundancy in representation

Goal: Better algorithm

10

Solution 3

Task:

Check if UIF |= ∀x(s1(x)≈t1(x) ∧ · · · ∧ sk (x)≈tk (x) →
∨m

j=1 s
′

j (x)≈t′j (x))

i.e. if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

j s
′

j (c)6≈t′j (c)) unsatisfiable.

11

Solution 3

Task:

Check if (s1(c)≈t1(c) ∧ · · · ∧ sk (c)≈tk (c) ∧
∧

k s
′

k
(c)6≈t′

k
(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

represent the terms occurring in the problem as DAG’s

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

12

Solution 3

Task: Check if (s1(c)≈t1(c)∧ · · · ∧ sk (c)≈tk (c)∧ s(c)6≈t(c)) unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG’s

- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

- compute the “congruence closure” Rc of R

- check whether (v1, v3) ∈ Rc

13

Computing the congruence closure of a DAG

• DAG structures:

- G = (V ,E) directed graph

- Labelling on vertices

λ(v): label of vertex v

δ(v): outdegree of vertex v

- Edges leaving the vertex v are ordered

(v [i]: denotes i-th successor of v)

Example

2v
f

f

ba

v
1

3v 4v

λ(v1) = λ(v2) = f

λ(v3) = a,λ(v4) = b

δ(v1) = δ(v2) = 2

δ(v3) = δ(v4) = 0

v1[1] = v2, v2[2] = v4

...

14

Congruence closure of a DAG/Relation

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

The congruence closure of R is the smallest relation Rc on V which is:

• reflexive

• symmetric

• transitive

• congruence:

If λ(u) = λ(v) and δ(u) = δ(v)

and for all 1 ≤ i ≤ δ(u): (u[i], v [i]) ∈ Rc

then (u, v) ∈ Rc . 2v

2v
f

ba3v 4v

f

v
1

f

ba3v 4v

15

Congruence closure of a relation

Recursive definition

(u, v) ∈ R

(u, v) ∈ Rc

(v , v) ∈ Rc

(u, v) ∈ Rc

(v , u) ∈ Rc

(u, v) ∈ Rc (v ,w) ∈ Rc

(u,w) ∈ Rc

λ(u) = λ(v) u, v have n successors and (u[i], v [i]) ∈ Rc for all 1 ≤ i ≤ n

(u, v) ∈ Rc

• The congruence closure of R is the smallest set closed under these rules

16

Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence

closure of a graph G and a set R of pairs of vertices

• Use A for checking whether
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j is satisfiable.

(1) Construct graph corresponding to the terms occurring in si , ti , s
′

j , t
′

j

Let vt be the vertex corresponding to term t

(2) Let R = {(vsi , vti) | i ∈ {1, . . . , n}}

(3) Compute Rc .

(4) Output “Sat” if (vs′
j
, vt′

j
) 6∈ Rc for all 1 ≤ j ≤ m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

17

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof (⇒)

Assume A is a Σ-structure such that A |=
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j .

We can show that [vs]Rc = [vt]Rc implies that A |= s = t (Exercise).

(We use the fact that if [vs]Rc = [vt]Rc then there is a derivation for

(vs , vt) ∈ Rc in the calculus defined before; use induction on length of

derivation to show that A |= s = t.)

As A |= s′j 6≈ t′j , it follows that [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

18

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof(⇐) Assume that [vs′
j
]Rc 6= [vt′

j
]Rc for all 1 ≤ j ≤ m. We construct a

structure that satisfies
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j

• Universe is quotient of V w.r.t. Rc plus new element 0.

• c constant 7→ cA = [vc]Rc .

• f /n 7→ fA([v1]Rc , . . . , [vn]Rc) =















[vf (t1,...,tn)]Rc if vf (t1,...,tn) ∈ V ,

[vti]Rc = [vi]Rc for 1≤i≤n

0 otherwise

well-defined because Rc is a congruence.

• It holds that A |= s′j 6≈ t′j and A |= si ≈ ti

19

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Compute Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

20

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V ; (v , v ′) ∈ V 2

Task: Check whether (v , v ′) ∈ Rc

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Decide whether (v1, v3) ∈ Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

21

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

- Congruence relation 7→ corresponding partition

22

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

u

vFind(t)

t

- Congruence relation 7→ corresponding partition

- Use procedures which operate on the partition:

FIND(u): unique name of equivalence class of u

UNION(u, v) combines equivalence classes of u, v

finds repr. tu , tv of equiv.cl. of u, v ; sets FIND(u) to t

23

Computing the congruence closure of a DAG

MERGE(u, v) Input: G = (V , E) DAG + labelling

R relation on V closed under congruence

g u, v ∈ V

Output: the congruence closure of R ∪ {(u, v)}

If FIND(u) = FIND(v) [same canonical representative] then Return

If FIND(u) 6= FIND(v) then [merge u, v ; recursively-predecessors]

Pu := set of all predecessors of vertices w with FIND(w) = FIND(u)

Pv := set of all predecessors of vertices w with FIND(w) = FIND(v)

Call UNION(u, v) [merge congruence classes]

For all (x , y) ∈ Pu × Pv do: [merge congruent predecessors]

if FIND(x) 6= FIND(y) and CONGRUENT(x , y) then MERGE(x , y)

u

v

CONGRUENT(x , y)

if λ(x) 6= λ(y) then Return FALSE

For 1 ≤ i ≤ δ(x) if FIND(x[i]) 6= FIND(y [i]) then Return FALSE

Return TRUE.

24

Correctness
Proof:

(1) Returned equivalence relation is not too coarse

If x , y merged then (x , y) ∈ (R ∪ {(u, v)})c

(UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x , y vertices s.t. (x , y) ∈ (R ∪ {(u, v)})c then they are merged by the algorithm.

Induction of length of derivation of (x , y) from (R ∪ {(u, v)})c

(1) (x , y) ∈ R OK (they are merged)

(2) (x , y) 6∈ R. The only non-trivial case is the following:

λ(x) = λ(y), x , y have n successors xi , yi where

(xi , yi) ∈ (R ∪ {(u, v)})c for all 1 ≤ i ≤ b.

Induction hypothesis: (xi , yi) are merged at some point

(become equal during some call of UNION(a, b), made in some MERGE(a, b))

Successor of x equivalent to a (or b) before this call of UNION; same for y .

⇒ MERGE must merge x and y

25

Computing the Congruence Closure

Let G = (V ,E) graph and R ⊆ V × V

CC(G ,R) computes the Rc :

(1) R0 := ∅; i := 1

(2) while R contains ”fresh” elements do:

pick ”fresh” element (u, v) ∈ R

Ri := MERGE(u, v) for G and Ri−1; i := i + 1.

Complexity: O(n2)

Downey-Sethi-Tarjan congruence closure algorithm:

more sophisticated version of MERGE (complexity O(n · logn))

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on

congruence closure. Journal of the ACM, 27(2):356-364, 1980.

26

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

F = s1 ≈ t1 ∧ · · · ∧ sn ≈ tn ∧ s′1 6≈ t′1 ∧ · · · ∧ s′m 6≈ t′m

Solution: Let SF be the set of all subterms occurring in F

1. Construct the DAG for SF ; R0 = Id

2. [Build Rn the congruence closure of {(v(s1), v(t1)), . . . , (v(sn), v(tn))}]

For i ∈ {1, . . . , n} do Ri := MERGE(vsi , vti) w.r.t. Ri−1

3. If FIND(vs′
j
) = FIND(vt′

j
) for some j ∈ {1, . . . ,m} then return unsatisfiable

4. else [if FIND(vs′
j
) 6= FIND(vt′

j
) for all j ∈ {1, . . . ,m}] then return satisfiable

27

Example

f (a, b) ≈ a → f (f (a, b), b) ≈ a

Test: unsatisfiability of

f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task:

• Compute Rc

• Decide whether (v1, v3) ∈ Rc

Solution:

1. Construct DAG in the figure; R0 = Id .

2. Compute R1 := MERGE((v2, v3)

[Test representatives]

FIND(v2) = v2 6= v3 = FIND(v3)

Pv2
:= {v1};Pv3

:= {v2}

[Merge congruence classes]

UNION(v2, v3): sets FIND(v2) to v3.

[Compute and recursively merge predecessors]

Test: FIND(v1) = v1 6= v3 = FIND(v2)

CONGR(v1, v2)

MERGE(v1, v2): (different representatives)

calls UNION(v1, v2) which

sets FIND(v1) to v3.

3. Test whether FIND(v1) = FIND(v3). Yes.

Return unsatisfiable.

28

