Decision Procedures for Verification

Decision Procedures (2)

$$
8.01 .2015
$$

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Exam

Thursday, 12.03.2015, 13:00-15:00

Until now:

Decision Procedures

- Uninterpreted functions
congruence closure

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
(approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program
1: y := 1
2: if $z=x * x * x$
3: then $y:=x * x+y$
4: endif

1: y := 1
2: R1 := x*x
3: R2 := R1*x
4: jmpNE(z,R2,6)
5: y := R1+1

To prove: (indexes refer to values at line numbers)

$$
\begin{aligned}
& y_{1} \approx 1 \wedge\left[\left(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0}+y_{1}\right) \vee\left(z_{0} \not \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx y_{1}\right)\right] \wedge \\
& y_{1}^{\prime} \approx 1 \wedge R 1_{2} \approx x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3} \approx R 1_{2} * x_{0}^{\prime} \wedge \\
& \wedge \\
& \wedge\left[\left(z_{0}^{\prime} \approx R 2_{3} \wedge y_{5}^{\prime} \approx R 1_{2}+1\right) \vee\left(z_{0}^{\prime} \neq R 2_{3} \wedge y_{5}^{\prime} \approx y_{1}^{\prime}\right)\right] \wedge \\
& x_{0} \approx x_{0}^{\prime} \wedge y_{0} \approx y_{0}^{\prime} \wedge z_{0} \approx z_{0}^{\prime} \Longrightarrow \quad x_{0} \approx x_{0}^{\prime} \wedge y_{3} \approx y_{5}^{\prime} \wedge z_{0} \approx z_{0}^{\prime}
\end{aligned}
$$

Possibilities for checking it

(1) Abstraction.

Consider * to be a "free" function symbol (forget its properties).
Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of $*$.
(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\mathrm{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.
in general undecidable

Decidable fragment:

e.g. the class $\operatorname{Th}_{\forall}(\Sigma$-alg $)$ of all universal formulae which are true in all Σ-algebras.

Assume $\Pi=\emptyset$ (and \approx is the only predicate)
In this case we denote the theory of uninterpreted function symbols by $\operatorname{UIF}(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted Free(Σ)

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:
(1) testing validity of universal formulae w.r.t. UIF is decidable
(2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable
(3) testing satisfiability of conjunctions of literals w.r.t. UIF is decidable

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime} t(\bar{x})\right)$

Solutions

Solution 1. The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i} \approx t_{i}\right) \rightarrow \bigvee_{j} s_{j}^{\prime} \approx t_{j}^{\prime}$ is valid
(2) $E q(\sim) \wedge \operatorname{Con}(f) \wedge\left(\bigwedge_{i} s_{i} \sim t_{i}\right) \wedge\left(\bigwedge_{j} s_{j}^{\prime} \nsim t_{j}^{\prime}\right)$ is unsatisfiable.
where $E q(\sim): \operatorname{Refl}(\sim) \wedge \operatorname{Sim}(\sim) \wedge \operatorname{Trans}(\sim)$
$\operatorname{Con}(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\left(\wedge x_{i} \sim y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right)$
Disadvantage: Resolution inferences between transitivity axioms - nontermination

Solution 2. Ackermann's reduction: Flatten the formula (replace, bottom-up, $f(c)$ with a new constant $\left.c_{f}\right) \quad \phi \mapsto F L A T(\phi)$
Theorem 3.3.2: The following are equivalent:
(1) $\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c}) \quad$ is satisfiable
(2) $F C \wedge F L A T\left[\left(\bigwedge_{i} s_{i}(\bar{c}) \approx t_{i}(\bar{c})\right) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right]$ is satisfiable where $F C=\left\{c_{1} \approx d_{1}, \ldots c_{n} \approx d_{n} \rightarrow c_{f} \approx d_{f} \mid\right.$ if $f\left(c_{1}, \ldots, c_{n}\right)$ was renamed to c_{f} $f\left(d_{1}, \ldots, d_{n}\right)$ was renamed to $\left.d_{f}\right\}$
Note: The problem is decidable in PTIME
Problem: Handling of transitivity/congruence axiom $\mapsto O\left(n^{3}\right)$

Example

The following are equivalent:
(1) $\quad C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $F C \wedge F L A T[C]$ is satisfiable, where:
$F \operatorname{LAT}[f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

- $\operatorname{FLAT}[f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a]:=a_{1} \approx a \wedge a_{2} \not \approx a$

- $F C:=\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right)^{a_{2}}$

Thus, the following are equivalent:
(1) $C:=f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a$ is satisfiable
(2) $\left(a \approx a_{1} \rightarrow a_{1} \approx a_{2}\right) \wedge a_{1} \approx a \wedge a_{2} \not \approx a$ is satisfiable

Problems: Handling \approx; Redundancy in representation
Goal: Better algorithm

Solution 3

Task:
Check if UIF $\models \forall \bar{x}\left(s_{1}(\bar{x}) \approx t_{1}(\bar{x}) \wedge \cdots \wedge s_{k}(\bar{x}) \approx t_{k}(\bar{x}) \rightarrow \bigvee_{j=1}^{m} s_{j}^{\prime}(\bar{x}) \approx t_{j}^{\prime}(\bar{x})\right)$
i.e. if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \bigwedge_{j} s_{j}^{\prime}(\bar{c}) \not \approx t_{j}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3

Task:
Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge \bigwedge_{k} s_{k}^{\prime}(\bar{c}) \not \approx t_{k}^{\prime}(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]
represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b
\end{array}
$$

Solution 3

Task: Check if $\left(s_{1}(\bar{c}) \approx t_{1}(\bar{c}) \wedge \cdots \wedge s_{k}(\bar{c}) \approx t_{k}(\bar{c}) \wedge s(\bar{c}) \not \approx t(\bar{c})\right)$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$
\begin{array}{ll}
v_{1}: & f(f(a, b), b) \\
v_{2}: & f(a, b) \\
v_{3}: & a \\
v_{4}: & b \\
R: & \left\{\left(v_{2}, v_{3}\right)\right\}
\end{array}
$$

- compute the "congruence closure" R^{c} of R
- check whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Example

- DAG structures:
- $G=(V, E)$ directed graph
- Labelling on vertices
$\lambda(v)$: label of vertex v
$\delta(v)$: outdegree of vertex v
- Edges leaving the vertex v are ordered ($v[i]$: denotes i-th successor of v)

$$
\begin{aligned}
& \lambda\left(v_{1}\right)=\lambda\left(v_{2}\right)=f \\
& \lambda\left(v_{3}\right)=a, \lambda\left(v_{4}\right)=b \\
& \delta\left(v_{1}\right)=\delta\left(v_{2}\right)=2 \\
& \delta\left(v_{3}\right)=\delta\left(v_{4}\right)=0 \\
& v_{1}[1]=v_{2}, v_{2}[2]=v_{4}
\end{aligned}
$$

Congruence closure of a DAG/Relation

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

The congruence closure of R is the smallest relation R^{c} on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u)=\lambda(v)$ and $\delta(u)=\delta(v)$ and for all $1 \leq i \leq \delta(u):(u[i], v[i]) \in R^{c}$ then $(u, v) \in R^{c}$.

Congruence closure of a relation

Recursive definition

$$
\begin{aligned}
& \frac{(u, v) \in R}{(u, v) \in R^{c}} \\
& \frac{(u, v) \in R^{c}}{} \quad \frac{(u, v) \in R^{c}}{(v, u) \in R^{c}} \quad \frac{(u, v) \in R^{c} \quad(v, w) \in R^{c}}{(u, w) \in R^{c}} \\
& \frac{\lambda(u)=\lambda(v) \quad u, v \text { have } n \text { successors and }(u[i], v[i]) \in R^{c} \text { for all } 1 \leq i \leq n}{(u, v) \in R^{c}}
\end{aligned}
$$

- The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

- Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable.
(1) Construct graph corresponding to the terms occurring in $s_{i}, t_{i}, s_{j}^{\prime}, t_{j}^{\prime}$

Let v_{t} be the vertex corresponding to term t
(2) Let $R=\left\{\left(v_{s_{i}}, v_{t_{i}}\right) \mid i \in\{1, \ldots, n\}\right\}$
(3) Compute R^{c}.
(4) Output "Sat" if $\left(v_{s_{j}^{\prime}}, v_{t_{j}^{\prime}}\right) \notin R^{c}$ for all $1 \leq j \leq m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Proof (\Rightarrow)

Assume \mathcal{A} is a \sum-structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$.

We can show that $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ implies that $\mathcal{A} \models s=t$ (Exercise).
(We use the fact that if $\left[v_{s}\right]_{R^{c}}=\left[v_{t}\right]_{R^{c}}$ then there is a derivation for (v_{s}, v_{t}) $\in R^{c}$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \models s=t$.)

As $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$, it follows that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$ is satisfiable iff $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$.
$\operatorname{Proof}(\Leftarrow)$ Assume that $\left[v_{s_{j}^{\prime}}\right]_{R^{c}} \neq\left[v_{t_{j}^{\prime}}\right]_{R^{c}}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \wedge \bigwedge_{j=1}^{m} s_{j}^{\prime} \not \approx t_{j}^{\prime}$

- Universe is quotient of V w.r.t. R^{c} plus new element 0 .
- c constant $\mapsto c_{\mathcal{A}}=\left[v_{c}\right]_{R^{c}}$.
- $f / n \mapsto f_{\mathcal{A}}\left(\left[v_{1}\right]_{R^{c}}, \ldots,\left[v_{n}\right]_{R^{c}}\right)= \begin{cases}{\left[v_{f\left(t_{1}, \ldots, t_{n}\right)}\right]_{R^{c}}} & \text { if } v_{f\left(t_{1}, \ldots, t_{n}\right)} \in V, \\ & {\left[v_{t_{i}}\right]_{R^{c}}=\left[v_{i}\right]_{R^{c}} \text { for } 1 \leq i \leq n} \\ 0 & \text { otherwise }\end{cases}$ well-defined because R^{c} is a congruence.
- It holds that $\mathcal{A} \models s_{j}^{\prime} \not \approx t_{j}^{\prime}$ and $\mathcal{A} \models s_{i} \approx t_{i}$

Computing the congruence closure of a DAG

Given: $G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)
Example:
$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$

$$
R=\left\{\left(v_{2}, v_{3}\right)\right\}
$$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Compute R^{c}

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V ;\left(v, v^{\prime}\right) \in V^{2}
$$

Task: Check whether $\left(v, v^{\prime}\right) \in R^{c}$

Example:
$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$

$$
R=\left\{\left(v_{2}, v_{3}\right)\right\}
$$

Idea:

- Start with the identity relation $R^{c}=I d$
- Successively add new pairs of nodes to R^{c}; close relation under congruence.

Task: Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition

Computing the congruence closure of a DAG

Given: $\quad G=(V, E)$ DAG + labelling

$$
R \subseteq V \times V
$$

Task: Compute R^{c} (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_{i} (approximating R^{c}) by identifying congruent vertices u, v and computing $R_{i+1}:=$ congruence closure of $R_{i} \cup\{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition: FIND (u) : unique name of equivalence class of u

UNION (u, v) combines equivalence classes of u, v finds repr. t_{u}, t_{v} of equiv.cl. of u, v; sets $\operatorname{FIND}(u)$ to

Computing the congruence closure of a DAG

$$
\begin{array}{l|l}
\operatorname{MERGE}(u, v) \\
\mathrm{g}
\end{array} \quad \begin{aligned}
& \text { Input: } \quad G=(V, E) \text { DAG + labelling } \\
& R \text { relation on } V \text { closed under congruence } \\
& u, v \in V \\
& \text { Output: the congruence closure of } R \cup\{(u, v)\}
\end{aligned}
$$

If $\operatorname{FIND}(u)=\operatorname{FIND}(v)$ [same canonical representative] then Return
If $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$ then [merge u, v; recursively-predecessors]
$P_{u}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(u)$
$P_{v}:=$ set of all predecessors of vertices w with $\operatorname{FIND}(w)=\operatorname{FIND}(v)$
Call UNION (u, v) [merge congruence classes]
For all $(x, y) \in P_{u} \times P_{V}$ do: [merge congruent predecessors] if $\operatorname{FIND}(x) \neq \operatorname{FIND}(y)$ and $\operatorname{CONGRUENT}(x, y)$ then $\operatorname{MERGE}(x, y)$

CONGRUENT (x, y)
if $\lambda(x) \neq \lambda(y)$ then Return FALSE
For $1 \leq i \leq \delta(x)$ if $\operatorname{FIND}(x[i]) \neq \operatorname{FIND}(y[i])$ then Return FALSE
Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

If x, y merged then $(x, y) \in(R \cup\{(u, v)\})^{c}$
(UNION only on initial pair and on congruent pairs)
(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in(R \cup\{(u, v)\})^{c}$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup\{(u, v)\})^{c}$
(1) $(x, y) \in R$ OK (they are merged)
(2) $(x, y) \notin R$. The only non-trivial case is the following:

$$
\lambda(x)=\lambda(y), x, y \text { have } n \text { successors } x_{i}, y_{i} \text { where }
$$

$$
\left(x_{i}, y_{i}\right) \in(R \cup\{(u, v)\})^{c} \text { for all } 1 \leq i \leq b .
$$

Induction hypothesis: $\left(x_{i}, y_{i}\right)$ are merged at some point (become equal during some call of $\operatorname{UNION}(a, b)$, made in some $\operatorname{MERGE}(a, b)$) Successor of x equivalent to a (or b) before this call of UNION; same for y.
\Rightarrow MERGE must merge x and y

Computing the Congruence Closure

Let $G=(V, E)$ graph and $R \subseteq V \times V$
$C C(G, R)$ computes the R^{c} :
(1) $R_{0}:=\emptyset ; i:=1$
(2) while R contains "fresh" elements do:
pick "fresh" element $(u, v) \in R$
$R_{i}:=\operatorname{MERGE}(\mathrm{u}, \mathrm{v})$ for G and $R_{i-1} ; i:=i+1$.
Complexity: $O\left(n^{2}\right)$
Downey-Sethi-Tarjan congruence closure algorithm: more sophisticated version of MERGE (complexity $O(n \cdot \log n)$)

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)
Problem: Test satisfiability of the formula

$$
F=s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \wedge s_{1}^{\prime} \not \approx t_{1}^{\prime} \wedge \cdots \wedge s_{m}^{\prime} \not \approx t_{m}^{\prime}
$$

Solution: Let S_{F} be the set of all subterms occurring in F

1. Construct the DAG for $S_{F} ; R_{0}=I d$
2. [Build R_{n} the congruence closure of $\left\{\left(v\left(s_{1}\right), v\left(t_{1}\right)\right), \ldots,\left(v\left(s_{n}\right), v\left(t_{n}\right)\right)\right\}$]

For $i \in\{1, \ldots, n\}$ do $R_{i}:=\operatorname{MERGE}\left(v_{s_{i}}, v_{t_{i}}\right)$ w.r.t. R_{i-1}
3. If $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right)=\operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for some $j \in\{1, \ldots, m\}$ then return unsatisfiable
4. else $\left[\right.$ if $\operatorname{FIND}\left(v_{s_{j}^{\prime}}\right) \neq \operatorname{FIND}\left(v_{t_{j}^{\prime}}\right)$ for all $\left.j \in\{1, \ldots, m\}\right]$ then return satisfiable

Example

$$
f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a
$$

Test: unsatisfiability of

$$
f(a, b) \approx a \wedge f(f(a, b), b) \not \approx a
$$

Task:

- Compute R^{c}
- Decide whether $\left(v_{1}, v_{3}\right) \in R^{c}$

Solution:

1. Construct DAG in the figure; $R_{0}=I d$.
2. Compute $R_{1}:=\operatorname{MERGE}\left(\left(v_{2}, v_{3}\right)\right.$
[Test representatives]

$$
\operatorname{FIND}\left(v_{2}\right)=v_{2} \neq v_{3}=\operatorname{FIND}\left(v_{3}\right)
$$

$$
P_{v_{2}}:=\left\{v_{1}\right\} ; P_{v_{3}}:=\left\{v_{2}\right\}
$$

[Merge congruence classes]
$\operatorname{UNION}\left(v_{2}, v_{3}\right)$: sets $\operatorname{FIND}\left(v_{2}\right)$ to v_{3}.
[Compute and recursively merge predecessors]
Test: $\operatorname{FIND}\left(v_{1}\right)=v_{1} \neq v_{3}=\operatorname{FIND}\left(v_{2}\right)$ $\operatorname{CONGR}\left(v_{1}, v_{2}\right)$
$\operatorname{MERGE}\left(v_{1}, v_{2}\right)$: (different representatives) calls UNION $\left(v_{1}, v_{2}\right)$ which sets $\operatorname{FIND}\left(v_{1}\right)$ to v_{3}.
3. Test whether $\operatorname{FIND}\left(v_{1}\right)=\operatorname{FIND}\left(v_{3}\right)$. Yes.

Return unsatisfiable.

