Decision Procedures for Verification

Decision Procedures (2)

8.01.2015

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Thursday, 12.03.2015, 13:00-15:00

Until now:

Decision Procedures

- Uninterpreted functions
 - congruence closure

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification

 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 11: y := 12: if z = x*x*x2: R1 := x*x3: then y := x*x + y3: R2 := R1*x4: endif4: jmpNE(z,R2,6)5: y := R1+1

To prove: (indexes refer to values at line numbers)

 $y_{1} \approx 1 \land [(z_{0} \approx x_{0} * x_{0} \ast x_{0} \land y_{3} \approx x_{0} \ast x_{0} + y_{1}) \lor (z_{0} \not\approx x_{0} \ast x_{0} \land x_{0} \land y_{3} \approx y_{1})] \land$ $y_{1}' \approx 1 \land R_{1_{2}} \approx x_{0}' \ast x_{0}' \land R_{2_{3}} \approx R_{1_{2}} \ast x_{0}' \land$ $\land [(z_{0}' \approx R_{2_{3}} \land y_{5}' \approx R_{1_{2}} + 1) \lor (z_{0}' \neq R_{2_{3}} \land y_{5}' \approx y_{1}')] \land$ $x_{0} \approx x_{0}' \land y_{0} \approx y_{0}' \land z_{0} \approx z_{0}' \implies x_{0} \approx x_{0}' \land y_{3} \approx y_{5}' \land z_{0} \approx z_{0}'$

(1) **Abstraction**.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\boldsymbol{\Sigma}=(\boldsymbol{\Omega},\boldsymbol{\Pi})$ be arbitrary

Let $\mathcal{M} = \Sigma\text{-alg}$ be the class of all $\Sigma\text{-structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $Th_{\forall}(\Sigma$ -alg) of all universal formulae which are true in all Σ -algebras.

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $Free(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable
- (3) testing satisfiability of conjunctions of literals w.r.t. UIF is decidable

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j t(\overline{x}))$

Solutions

Solution 1. The following are equivalent: (1) $(\bigwedge_i s_i \approx t_i) \rightarrow \bigvee_j s'_j \approx t'_j$ is valid (2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_i s_i \sim t_i) \wedge (\bigwedge_j s'_j \not\sim t'_j)$ is unsatisfiable. where $Eq(\sim)$: Refl $(\sim) \wedge Sim(\sim) \wedge Trans(\sim)$ $Con(f) : \forall x_1, \ldots, x_n, y_1, \ldots, y_n(\bigwedge x_i \sim y_i \rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n))$ Disadvantage: Resolution inferences between transitivity axioms – nontermination

Solution 2. Ackermann's reduction: Flatten the formula (replace, bottom-up, f(c) with a new constant c_f) $\phi \mapsto FLAT(\phi)$ Theorem 3.3.2: The following are equivalent: (1) $(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})$ is satisfiable (2) $FC \land FLAT[(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})]$ is satisfiable where $FC = \{c_1 \approx d_1, \ldots, c_n \approx d_n \rightarrow c_f \approx d_f \mid \text{ if } f(c_1, \ldots, c_n) \text{ was renamed to } c_f f(d_1, \ldots, d_n) \text{ was renamed to } d_f\}$ Note: The problem is decidable in PTIME Problem: Handling of transitivity/congruence axiom $\mapsto O(n^3)$

Example

The following are equivalent:

- (1) $C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$ is satisfiable
- (2) $FC \wedge FLAT[C]$ is satisfiable, where:

 $FLAT[f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

•
$$FLAT[f(a, b) \approx a \land f(f(a, b), b) \not\approx a] := a_1 \approx a \land a_2 \not\approx a$$

 $f(a, b) = a_1$
 $f(a, b) = a_1$
 $f(a_1, b) = a_2$
• $FC := (a \approx a_1 \rightarrow a_1 \approx a_2)^{a_2}$

Thus, the following are equivalent: (1) f(x, b) = f(x,

(1)
$$C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$$
 is satisfiable
(2) $(a \approx a_1 \rightarrow a_1 \approx a_2) \wedge a_1 \approx a \wedge a_2 \not\approx a$ is satisfiable
 $FC \qquad FLAT[C]$

Problems: Handling \approx ; Redundancy in representation

Goal: Better algorithm

Solution 3

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x}))$

i.e. if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c}))$ unsatisfiable.

Solution 3

Task:

Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_k s'_k(\overline{c}) \not\approx t'_k(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_1 : f(f(a, b), b)$$

 $v_2 : f(a, b)$
 $v_3 : a$
 $v_3 : b$
 $v_4 : b$

Solution 3

Task: Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land s(\overline{c}) \not\approx t(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_{1} : f(f(a, b), b)$$

$$v_{2} : f(a, b)$$

$$v_{3} : a$$

$$v_{4} : b$$

$$R : \{(v_{2}, v_{3})\}$$

- compute the "congruence closure" R^c of R
- check whether $(v_1, v_3) \in R^c$

Example

• DAG structures:

. . .

- G = (V, E) directed graph
- Labelling on vertices

 $\lambda(v)$: label of vertex v $\delta(v)$: outdegree of vertex v

Edges leaving the vertex v are ordered
 (v[i]: denotes i-th successor of v)

$$\lambda(v_1) = \lambda(v_2) = f$$

$$\lambda(v_3) = a, \lambda(v_4) = b$$

$$\delta(v_1) = \delta(v_2) = 2$$

$$\delta(v_3) = \delta(v_4) = 0$$

$$v_1[1] = v_2, v_2[2] = v_4$$

Congruence closure of a DAG/Relation

Given: G = (V, E) DAG + labelling $R \subseteq V \times V$

The congruence closure of R is the smallest relation R^c on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u) = \lambda(v)$ and $\delta(u) = \delta(v)$ and for all $1 \le i \le \delta(u)$: $(u[i], v[i]) \in R^c$ then $(u, v) \in R^c$.

Congruence closure of a relation

Recursive definition

 $\begin{array}{c} (u,v) \in R \\ \hline (u,v) \in R^{c} \\ \hline (v,v) \in R^{c} \\ \hline (v,u) \in R^{c} \\ \hline \lambda(u) = \lambda(v) \\ u,v \text{ have } n \text{ successors } \text{ and } (u[i],v[i]) \in R^{c} \text{ for all } 1 \leq i \leq n \\ \hline (u,v) \in R^{c} \end{array}$

• The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph *G* and a set *R* of pairs of vertices

• Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_i \approx t_i \wedge \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$ is satisfiable.

(1) Construct graph corresponding to the terms occurring in s_i , t_i , s'_j , t'_j Let v_t be the vertex corresponding to term t

(2) Let
$$R = \{(v_{s_i}, v_{t_i}) \mid i \in \{1, \ldots, n\}\}$$

(3) Compute R^c .

(4) Output "Sat" if $(v_{s'_j}, v_{t'_j}) \notin R^c$ for all $1 \leq j \leq m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)

$$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$$

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$

Proof (\Rightarrow)

Assume \mathcal{A} is a Σ -structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_i \approx t_i \land \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$.

We can show that $[v_s]_{R^c} = [v_t]_{R^c}$ implies that $\mathcal{A} \models s = t$ (Exercise).

(We use the fact that if $[v_s]_{R^c} = [v_t]_{R^c}$ then there is a derivation for $(v_s, v_t) \in R^c$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \models s = t$.)

As
$$\mathcal{A} \models s'_j \not\approx t'_j$$
, it follows that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$

Proof(\Leftarrow) Assume that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s'_j \not\approx t'_j$

• Universe is quotient of V w.r.t. R^c plus new element 0.

•
$$c \operatorname{constant} \mapsto c_{\mathcal{A}} = [v_c]_{R^c}$$
.
• $f/n \mapsto f_{\mathcal{A}}([v_1]_{R^c}, \dots, [v_n]_{R^c}) = \begin{cases} [v_{f(t_1,\dots,t_n)}]_{R^c} & \text{if } v_{f(t_1,\dots,t_n)} \in V, \\ [v_{t_i}]_{R^c} = [v_i]_{R^c} \text{ for } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$

well-defined because R^c is a congruence.

• It holds that $\mathcal{A} \models s'_j \not\approx t'_j$ and $\mathcal{A} \models s_i \approx t_i$

Given:
$$G = (V, E)$$
 DAG + labelling

 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Example:

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$

$$v_{1}$$

$$F(v_{2}, v_{3})$$

$$k_{3}$$

$$k_{3}$$

$$k_{4}$$

$$k_{4}$$

$$R = \{(v_{2}, v_{3})\}$$

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c; close relation under congruence.

Task: Compute R^c

Given: G = (V, E) DAG + labelling $R \subseteq V \times V; (v, v') \in V^2$ Task: Check whether $(v, v') \in R^c$

Example:

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$

$$v_{1}$$

$$F(v_{2}, v_{3})$$

$$k_{3}$$

$$k_{3} \qquad b \qquad v_{4}$$

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c ;

close relation under congruence.

Task: Decide whether $(v_1, v_3) \in \mathbb{R}^c$

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing $R_{i+1} :=$ congruence closure of $R_i \cup \{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition

Given:
$$G = (V, E)$$
 DAG + labelling
 $R \subseteq V \times V$
Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing R_{i+1} := congruence closure of $R_i \cup \{(u, v)\}$.

Representation:

- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition:
 FIND(u): unique name of equivalence class of u
 UNION(u, v) combines equivalence classes of u, v
 finds repr. t_u, t_v of equiv.cl. of u, v; sets FIND(u) to

MERGE(u, v)

g

Input: G = (V, E) DAG + labelling R relation on V closed under congruence $u, v \in V$ Output: the congruence closure of $R \cup \{(u, v)\}$

If FIND(u) = FIND(v) [same canonical representative] then Return If $FIND(u) \neq FIND(v)$ then [merge u, v; recursively-predecessors] $P_u :=$ set of all predecessors of vertices w with FIND(w) = FIND(u) $P_v :=$ set of all predecessors of vertices w with FIND(w) = FIND(v)Call UNION(u, v) [merge congruence classes] For all $(x, y) \in P_u \times P_v$ do: [merge congruent predecessors] if $FIND(x) \neq FIND(y)$ and CONGRUENT(x, y) then MERGE(x, y)

< u < v

CONGRUENT(x, y)

if $\lambda(x) \neq \lambda(y)$ then Return FALSE For $1 \leq i \leq \delta(x)$ if FIND $(x[i]) \neq$ FIND(y[i]) then Return FALSE

Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

If x, y merged then $(x, y) \in (R \cup \{(u, v)\})^c$ (UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in (R \cup \{(u, v)\})^c$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup \{(u, v)\})^c$

(1) (x, y) ∈ R OK (they are merged)
(2) (x, y) ∉ R. The only non-trivial case is the following:
λ(x) = λ(y), x, y have n successors x_i, y_i where
(x_i, y_i) ∈ (R ∪ {(u, v)})^c for all 1 ≤ i ≤ b.
Induction hypothesis: (x_i, y_i) are merged at some point
(become equal during some call of UNION(a, b), made in some MERGE(a, b))

Successor of x equivalent to a (or b) before this call of UNION; same for y.

 \Rightarrow MERGE must merge x and y

Computing the Congruence Closure

Let G = (V, E) graph and $R \subseteq V \times V$

CC(G, R) computes the R^c :

(1) $R_0 := \emptyset; i := 1$

(2) while R contains "fresh" elements do:

pick "fresh" element $(u, v) \in R$

 $R_i := MERGE(u, v)$ for G and R_{i-1} ; i := i + 1.

Complexity: $O(n^2)$

Downey-Sethi-Tarjan congruence closure algorithm: more sophisticated version of MERGE (complexity $O(n \cdot logn)$)

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

$$\mathsf{F} = \mathsf{s}_1 \approx \mathsf{t}_1 \wedge \cdots \wedge \mathsf{s}_n \approx \mathsf{t}_n \wedge \mathsf{s}'_1 \not\approx \mathsf{t}'_1 \wedge \cdots \wedge \mathsf{s}'_m \not\approx \mathsf{t}'_m$$

Solution: Let S_F be the set of all subterms occurring in F

- 1. Construct the DAG for S_F ; $R_0 = Id$
- 2. [Build R_n the congruence closure of $\{(v(s_1), v(t_1)), ..., (v(s_n), v(t_n))\}$] For $i \in \{1, ..., n\}$ do $R_i := MERGE(v_{s_i}, v_{t_i})$ w.r.t. R_{i-1}
- 3. If $FIND(v_{s'_i}) = FIND(v_{t'_i})$ for some $j \in \{1, ..., m\}$ then return unsatisfiable
- 4. else [if FIND $(v_{s'_j}) \neq$ FIND $(v_{t'_j})$ for all $j \in \{1, ..., m\}$] then return satisfiable

Example

$$f(a,b)pprox a
ightarrow f(f(a,b),b)pprox a$$

Test: unsatisfiability of $f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$

Task:

- Compute R^c
- Decide whether $(v_1, v_3) \in R^c$

Solution:

1. Construct DAG in the figure; $R_0 = Id$. 2. Compute $R_1 := MERGE((v_2, v_3))$ [Test representatives] $FIND(v_2) = v_2 \neq v_3 = FIND(v_3)$ $P_{v_2} := \{v_1\}; P_{v_3} := \{v_2\}$ [Merge congruence classes] UNION (v_2, v_3) : sets FIND (v_2) to v_3 . [Compute and recursively merge predecessors] Test: $FIND(v_1) = v_1 \neq v_3 = FIND(v_2)$ $CONGR(v_1, v_2)$ $MERGE(v_1, v_2)$: (different representatives) calls UNION(v_1, v_2) which sets $FIND(v_1)$ to v_3 . 3. Test whether $FIND(v_1) = FIND(v_3)$. Yes. Return unsatisfiable.