
Decision Procedures for Verification

Decision Procedures (3)

13.01.2015

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now:

Decision Procedures

• Uninterpreted functions

congruence closure

2

3.4. Decision procedures for numeric domains

• Peano arithmetic

• Theory of real numbers

• Linear arithmetic

• over N/Z

• over R/Q

Decision procedures

• Light-weight fragments of linear arithmetic: Difference logic

• Full fragment (LI (R) or LI (Q)

3

Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {<}) (also with ≈)

(does not capture true arithmetic by Goedel’s incompleteness theorem)

Undecidable

4

Theory of integers

•Th((Z, {0, 1,+, ∗}, {<}))

Undecidable

5

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same

properties as real numbers)

Axioms:

• the ordered field axioms;

• axiom asserting that every positive number has a square root; and

• an axiom scheme asserting that all polynomials of odd order have at

least one real root.

Tarski (1951) proved that the theory of real closed fields, including

the binary predicate symbols ”=”, ” 6=”, and ”<”, and the operations

of addition and multiplication, admits elimination of quantifiers,

which implies that it is a complete and decidable theory.

6

Linear arithmetic

Syntax

• Signature Σ = ({0/0, s/1,+/2}, {< /2})

• Terms, atomic formulae – as usual

Example: 3 ∗ x1 + 2 ∗ x2 ≤ 5 ∗ x3 abbreviation for

(x1 + x1 + x1) + (x2 + x2) ≤ (x3 + x3 + x3 + x3 + x3)

7

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

8

Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

Linear arithmetic over N/Z

Th(Z+) Z+ = (Z, 0, s, +,<) the standard interpretation of integers.

Axiomatization

Linear arithmetic over Q/R

Th(R) R = (R, {0, 1,+}, {<}) the standard interpretation of reals;

Th(Q) Q = (Q, {0, 1,+}, {<}) the standard interpretation of rationals.

Axiomatization

9

Outline

We first present an efficient method for checking the satisfiability

of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking

the satisfiability of arbitrary formulae in linear arithmetic.

10

Simple fragments of linear arithmetic

• Difference logic

check satisfiability of conjunctions of constraints of the form

x − y ≤ c

• UTVPI (unit, two variables per identity)

check satisfiability of conjunctions of constraints of the form

ax + by ≤ c, where a, b ∈ {−1, 0, 1}

11

Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

12

Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after

every update of i .

13

Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

Solution: Show that i ≤ s is an invariant of the program:

1) It holds at the first line: i = 1 → i ≤ s

2) It is preserved under the updates in the while loop:

∀n,m, s, i , i ′ (1 ≤ n < m < s ∧ i < n ∧ i ≤ s ∧ i ′ ≈ i + 1 → i ′ ≤ s)

14

Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

x − y ≤ c

where x , y are variables and c is a numerical constant.

• The set of formulae is:

F ,G ,H ::= A (atomic formula)

| (F ∧ G) (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is Q or

resp. Z.

15

Positive difference logic

A decision procedure for positive difference logic (≤ only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.

G(S) = (V ,E ,w), the inequality graph of S , is a weighted graph with:

• V = X (S), the set of variables occurring in S

• e = (x , y) ∈ E with w(e) = c iff x − y ≤ c ∈ S

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford

algorithm for finding the single-source shortest paths in a directed weighted

graph in time O(|V | · |E |). (Side-effect of the algorithm exploited - if there

exists a negative cycle in the graph then the algorithm finds it and aborts.)

16

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇒) Assume S satisfiable. Let β : X → Z satisfying assignment.

Let v1
c12→ v2

c23→ · · ·
cn−1,n
→ vn

cn1→ v1 be a cycle in G(S).

Then: β(v1)− β(v2) ≤ c12

β(v2)− β(v3) ≤ c23

. . .

g β(vn)− β(v1) ≤ cn1

0 = β(v1)− β(v1) ≤
∑n−1

i=1 ci ,i+1 + cn1

Thus, for satisfiability it is necessary that all cycles are positive.

17

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇐) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s.

(This does not introduce negative cycles.)

Let δuv denote the minimal weight of the paths from u to v .

• δuv = ∞ if there is no path from u to v .

• well-defined since there are no negative cycles

Define β : V → Z by β(v) = δvs . Claim: β satisfying assignment for S .

Let x − y ≤ c ∈ S . Consider the shortest paths from x to s and from y to

s. By the triangle inequality, δxs ≤ c + δys , i.e. β(x)− β(y) ≤ c.

18

Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

19

Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Satisfiability over Z

y − x < c iff y − x ≤ c − 1

Natural reduction to positive difference logic.

20

Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).

21

Difference logic

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).

Proof:

Need to extend the graph construction and the unsatisfiability condition:

x1 − x2 ≺1 c1, . . . , xn − x1 ≺n cn unsatisfiable iff

•
∑n

i=1 ci < 0, or •
∑n

i=1 ci = 0 and one ≺i is strict.

Consider pairs (≺, c) instead of numbers c

• (≺, c) <B (≺′, c′) iff c < c′ or (c = c′, ≺1=< and ≺2=≤)

• (≺, c) + (≺′, c′) = (≺′′, c + c′) where ≺′′=< iff ≺ or ≺′ is <.

22

Linear arithmetic over N or Z

1. Th(Z+) Z+ = (Z, 0, s, +,<) the standard interpretation of integers.

2. Presburger arithmetic.

Axiomatization:

∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

23

Linear arithmetic over N or Z

Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

• automata theoretic method

Linear arithmetic over Z:

check satisfiability of conjunctions of (in)equalities over Z: NP-hard

• Integer linear programming

use branch-and-bound/cutting planes

• The Omega test – use variable elimination

24

Linear arithmetic over R or Q

• Th(R)

R = (R, {0, 1,+}, {<}) the standard interpretation of real numbers;

• Th(Q)

Q = (Q, {0, 1,+}, {<}) the standard interpretation of rational

numbers.

25

Linear arithmetic over R or Q

Axiomatization:

The equational part of linear rational arithmetic is described by the theory

of divisible torsion-free abelian groups:

∀x , y , z(x + (y + z) ≈ (x + (y + z))) (associativity)

∀x , y(x + y ≈ y + x) (commutativity)

∀x(x + 0 ≈ x) (identity)

∀x∃y(x + y ≈ 0) (inverse)

For all n ≥ 1: ∀x(x + · · · + x
︸ ︷︷ ︸

n times

≈ 0 → x ≈ 0) (torsion-freeness)

For all n ≥ 1 : ∀x∃y(y + · · · + y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬1 ≈ 0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We

really need infinitely many axioms for torsion-freeness and divisibility.

26

Linear arithmetic over R or Q

By adding the axioms of a compatible strict total ordering, we define

ordered divisible abelian groups:

∀x (¬x < x) (irreflexivity)

∀x , y , z (x < y ∧ y < z → x < z) (transitivity)

∀x , y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x , y , z (x < y → x + z < y + z) (compatibility)

0 < 1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous.

Moreover, as soon as we add the axioms of compatible strict total orderings,

torsion-freeness can be omitted.

Every ordered divisible abelian group is obviously torsion-free. In fact the

converse holds: Every torsion-free abelian group can be ordered

[F.-W. Levi, 1913].

Examples: Q,R,Qn,Rn, . . .

27

Linear arithmetic over R or Q

The signature can be extended by further symbols:

• ≤ /2,> /2,≥ /2, 6≈ /2: defined using < and ≈

• −/1: Skolem function for inverse axiom

• −/2: defined using +/2 and −/1

• divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

• multn/1: defined by ∀x(multn(x) ≈ x + · · · + x
︸ ︷︷ ︸

n times

for all n ≥ 1.

• multq/1: defined using multn, divn, – for all q ∈ Q.

(We usually write q · t or qt instead of multq(t).)

• q/0 (for q ∈ Q): defined by q ≈ q · 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a

formula over the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free

abelian groups correspond to (ordered) rational vector spaces.

28

Linear arithmetic over R or Q

Theorem.

(1) The satisfiability of any conjunction of (strict and non-strict) linear

inequalities can be checked in PTIME [Khakian’79].

(2) The complexity of checking the satisfiability of sets of clauses in linear

arithmetic is in NP [Sonntag’85].

Literature

[Khakian’79] L. Khachian. “A polynomial time algorithm for linear

programming.” Soviet Math. Dokl. 20:191-194, 1979.

[Sonntag’85] E.D. Sontag. “Real addition and the polynomial hierarchy”.

Inf. Proc. Letters 20(3):115-120, 1985.

29

Linear arithmetic over R or Q

Methods The algorithms currently used are not PTIME.

• The simplex method

• The Fourier-Motzkin method – use variable elimination

30

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination:

every formula ∃xF or ∀xF in linear rational arithmetic can be converted

into an equivalent formula without the variable x .

The method was discovered in 1826 by J. Fourier and re-discovered by T.

Motzkin in 1936.

Observation: Every literal over the variables x , y1, ..., yn can be

converted into an ODAG-equivalent atom x ∼ t[y] or 0 ∼ t[y],

where ∼∈ {<,>,≤,≥,≈, 6≈} and t[y] has the form
∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate it on one

side of the atom.

Moreover, we can convert every 6≈ atom into an ODAG-equivalent

disjunction of two < atoms.

31

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(1) If the conjunction contains an equation x ≈ t[y],

we can eliminate the quantifier ∃x by substitution:

∃x(x ≈ t[y] ∧ F)

is equivalent to

Fσ, where σ = [t[y]/x]

32

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

(2) If x occurs only in inequations, then:

∃x (
∧

i x < si (y) ∧
∧

j x ≤ tj (y)∧
∧

k x > uk (y) ∧
∧

l x ≥ vl (y)∧

F (y))

is equivalent to:
∧

i

∧
k si (y) > uk(y) ∧

∧
j

∧
k tj (y) > uk (y)∧

∧
i

∧
l si (y) > vl (y) ∧

∧
j

∧
l tj (y) ≥ vl (y)∧

F (y)

Proof: “⇒” follows by transitivity;

“⇐” Take 1
2
(min{si , tj}+max{uk , vl}) as a witness.

33

Fourier-Motzkin Quantifier Elimination

Extension to arbitrary formulas:

• Transform into prenex formula;

• If innermost quantifier is ∃:

transform matrix into DNF and move ∃ into disjunction;

• If innermost quantifier is ∀: replace ∀xF by ¬∃x¬F , then eliminate ∃.

Consequences:
(1) Every closed formula over the signature of ODAGs is ODAG-equivalent

to either ⊤ or ⊥.
(2) ODAGs are a complete theory, i.e., every closed formula over the

signature of ODAGs is either valid or unsatisfiable w.r.t. ODAGs.
(3) Every closed formula over the signature of ODAGs holds either in all

ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of

ODAGs. (These properties do not hold for extended signatures!)

34

Fourier-Motzkin: Complexity

• One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

• m quantifiers ∃ . . . ∃:

naive implementation needs O(n2
m
) runtime;

It is unknown whether optimized implementation with simply

exponential runtime is possible.

• m quantifiers ∃∀∃∀ . . . ∃∀:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.

35

Fourier-Motzkin: Complexity

• One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

• m quantifiers ∃ . . . ∃:

naive implementation needs O(n2
m
) runtime;

It is unknown whether optimized implementation with simply

exponential runtime is possible.

• m quantifiers ∃∀∃∀ . . . ∃∀:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.

Improvement: Loos-Weispfenning Quantifier Elimination

36

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic

was developed by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution

method”.

For simplicity, we consider only one particular ODAG, namely Q (as we

have seen above, the results are the same for all ODAGs).

37

Loos-Weispfenning Quantifier Elimination

Let F (x , y) be a positive boolean combination of linear (in-)equations of

the form x ∼i si (y) and 0 ∼j sj (y) with ∼i ,∼j∈ {≈, 6≈,<,≤,>,≥},

(i.e. a formula built from linear (in-) equations, ∨ and ∧, but without ¬).

Goal: Find a finite set T of “test points” so that

∃xF (x , y) |=|
∨

t∈T

F (x , y)[t/x].

In other words:

We want to replace the infinite disjunction ∃x by a finite disjunction.

38

Loos-Weispfenning Quantifier Elimination

If we keep the values of the variables y fixed, we can regard F as a function

F : Q → {0, 1} defined by x 7→ F (x , y)

Remarks:

(1) The value of each of the atoms si (y) ∼i x changes only at si (y),

(2) The value of F can only change if the value of one of its atoms changes.

(3) F is a piecewise constant function; more precisely:

the set of all x with F (x , y) = 1 is a finite union of intervals.

(The union may be empty, the individual intervals may be finite or infinite

and open or closed.)

Let δ(y) = min{|si (y)− sj (y)| | si (y) 6= sj (y)}.

Each of the intervals has either length 0 (i.e., it consists of one point), or

its length is at least δ(y).

39

Loos-Weispfenning Quantifier Elimination

If the set of all x for which F (x , y) is 1 is non-empty, then

(i) F (x , y) = 1 for all x ≤ r(y) for some r(y) ∈ Q

(ii) or there is some point where the value of F (x , y) switches from 0 to 1

when we traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

40

Loos-Weispfenning Quantifier Elimination

We start with a “sufficiently small” test point r(y) to take care of case (i).

For case (ii), we observe that F (x , y) can only switch from 0 to 1 if one

of the atoms switches from 0 to 1. (We consider only positive boolean

combinations of atoms and ∧ and ∨ are monotonic w.r.t. truth values.)

• x ≤ si (y) and x < si (y) do not switch from 0 to 1 when x grows.

• x ≥ si (y) and x ≈ si (y) switch from 0 to 1 at si (y)

⇒ si (y) is a test point.

• x > si (y) and x 6≈ si (y) switch from 0 to 1 “right after” si (y)

⇒ si (y) + ǫ (for some 0 < ǫ < δ(y)) is a test point.

41

Loos-Weispfenning Quantifier Elimination

We start with a “sufficiently small” test point r(y) to take care of case (i).

For case (ii), we observe that F (x , y) can only switch from 0 to 1 if one

of the atoms switches from 0 to 1. (We consider only positive boolean

combinations of atoms and ∧ and ∨ are monotonic w.r.t. truth values.)

• x ≤ si (y) and x < si (y) do not switch from 0 to 1 when x grows.

• x ≥ si (y) and x ≈ si (y) switch from 0 to 1 at si (y)

⇒ si (y) is a test point.

• x > si (y) and x 6≈ si (y) switch from 0 to 1 “right after” si (y)

⇒ si (y) + ǫ (for some 0 < ǫ < δ(y)) is a test point.

If r(y) is sufficiently small and 0 < ǫ < δ(y), then

T := {r(y)} ∪ {si (y) |∼i∈ {≥,≈}} ∪ {si (y) + ǫ| ∼i∈ {>, 6≈}}.

is a set of test points.

42

Loos-Weispfenning Quantifier Elimination

Problems:

(1) We don’t know how small r(y) has to be for case (i).

(2) We don’t know δ(y) for case (ii).

Idea: We consider the limits for r → −∞ and for ǫ → 0 (but positive),

that is, we redefine

T := {−∞} ∪ {si (y) |∼i∈ {≥,≈}} ∪ {si (y) + ǫ| ∼i∈ {>, 6≈}}.

New problem:

How can we eliminate the infinitesimals −∞ and ǫ when we substitute

elements of T for x?

43

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(y))[−∞/x] := limr→−∞(r < s(y)) = ⊤

(x ≤ s(y))[−∞/x] := limr→−∞(r ≤ s(y)) = ⊤

(x > s(y))[−∞/x] := limr→−∞(r > s(y)) =⊥

(x ≥ s(y))[−∞/x] := limr→−∞(r ≥ s(y)) =⊥

(x ≈ s(y))[−∞/x] := limr→−∞(r ≈ s(y)) =⊥

(x 6≈ s(y))[−∞/x] := limr→−∞(r 6≈ s(y)) = ⊤

44

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ < s(y)) = (u < s(y))

(x ≤ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≤ s(y)) = (u < s(y))

(x > s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ > s(y)) = (u ≥ s(y))

(x ≥ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≥ s(y)) = (u ≥ s(y))

(x ≈ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ ≈ s(y)) =⊥

(x 6≈ s(y))[u + ǫ/x] := lim
ǫ→0
ǫ>0

(u + ǫ 6≈ s(y)) = ⊤

We have traversed the real axis from −∞ to +∞.

45

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

Alternatively, we can traverse it from +∞ to −∞.

In this case, the test points are

T ′ := {+∞} ∪ {si (y)| ∼i∈ {≤,≈}} ∪ {si (y)− ǫ| ∼i∈ {<, 6≈}}.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

For a universally quantified formula ∀xF , we replace it by ¬∃x¬F , push

inner negation downwards, and then continue as before.

Note that there is no CNF/DNF transformation required.

Loos-Weispfenning quantifier elimination works on arbitrary positive

formulas.

46

Loos-Weispfenning: Complexity

• One LW-step for ∃ or ∀:

As the number of test points is at most equal to the number of atoms,

the formula size grows quadratically; therefore O(n2) runtime.

• Multiple quantifiers of the same kind:

∃x2∃x1.F (x1, x2, y)

7→ ∃x2.
∨

t1∈T1
F (x1, x2, y)[t1/x1]

7→
∨

t1∈T1
(∃x2.F (x1, x2, y)[t1/x1])

7→
∨

t1∈T1

∨
t2∈T2

F (x1, x2, y)[t1/x1][t2/x2]

• m quantifiers ∃ . . . ∃ or ∀...∀:

formula size is multiplied by n in each step ⇒ O(nm+1) runtime.

• m quantifiers ∃∀∃∀ . . . ∀: doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant.

An efficient implementation must make use of simplification techniques.

47

Until now

Decidable fragments of first-order logic

Decision procedures for single theories

• UIF

• Numeric domains

Here:

Difference logic

Linear arithmetic over R, Q

Next: Reasoning in combinations of theories

Combinations of decision procedures

48

