
Decision Procedures for Verification

First-Order Logic (2)

25.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Exam

Question: Oral or written?

When?

1. Termin: first two weeks after end of lectures

(16.02.15-27.02.15)

2. Termin: March or April.

Doodle

2

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

3

Signature

A signature Σ = (Ω,Π), fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0, written p/m.

A many-sorted signature Σ = (S , Ω, Π), fixes an alphabet of non-logical

symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

4

Variables

We assume that X is a given countably infinite set of symbols which we use

for (the denotation of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

5

Terms, Atoms, Formulae

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

6

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

Equality: Several possibilities

• ≈s for every sort s
• t ≈ t′ well-formed iff t and t′ are terms of the same sort
• No restrictions (restrictions only on the semantic level)

7

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

8

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P,Q,R, S , ...

predicate symbols with arity ≥ 1 are denoted

• p, q, r , ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...

9

Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential

forms.

Formulas without variables are called ground.

10

Bound and Free Variables

Example:

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) → q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

11

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

12

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

Many-sorted case: Substitutions must be sort-preserving:

If x is a variable of sort s, then σ(x) must be a term of sort s.

13

Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =

si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

t, if y = x

σ(y), otherwise

14

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not

captured upon placing them into the scope of a quantifier Qy , hence the

bound variable must be renamed into a “fresh”, that is, previously unused,

variable z.

15

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(Qx F)σ = Qz (F [x 7→ z]σ) ; with z a fresh variable

16

2.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.

17

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.

18

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra and

its universe.

By Σ-Alg we denote the class of all Σ-algebras.

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure),

where Σ = (S , Ω, Π) is a triple

A=({Us}s∈S , (fA:Us1×. . .×Usn→Us) f∈Ω,
a(f)=s1...sn→s

(pA:Us1× . . .×Usm→{0, 1}) p∈Π
a(p)=s1...sm

)

where Us 6= ∅ is a set, called the universe of A of sort s.

19

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

20

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A),

is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.

Many-sorted case:

β = {βs}s∈S , βs : Xs → Us

21

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

22

Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=

a if x = y

β(y) otherwise

23

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

24

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

25

Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

26

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

27

Substitution Lemma

The following propositions, to be proved by structural induction, hold for

all Σ-algebras A, assignments β, and substitutions σ.

Lemma 2.3: For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 2.4: For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

Corollary 2.5: A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution

corresponds to the semantic concept of an assignment.

28

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G

:⇔ for all A ∈ Σ-alg and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-alg und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

29

Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

30

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?

31

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?

Answer :

N |= F iff there is no structure A and no assignment β : X → UA

with A(β)(G) = 1 for all G ∈ N ∪ {¬F}

iff N ∪ {¬F} is unsatisfiable.

32

Theory of a Structure

Let A ∈ Σ-alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write

down a formula F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

33

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s, +) its standard

interpretation on the integers.

Th(Z+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of Z, considers the

natural numbers N as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,

16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic

methods (and there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22
cn
)).

34

Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of ΣPA =

({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called Peano arithmetic

which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the

computational complexity of theories.

35

Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory ofM: Th(M) = {G ∈ FΣ(X) closed | M |= G}

36

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

37

Theories

F set of (closed) first-order formulae

Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

M class of Σ-algebras

Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

Note: F ⊆ Th(Mod(F)) (typically strict)

M ⊆ Mod(Th(M)) (typically strict)

38

Examples

1. Groups

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

∀x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z

∀x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

∀x x ∗ e ≈ x ∧ e ∗ x ≈ x

Every group G = (G , eG , ∗G , iG) is a model of F

Mod(F) is the class of all groups

F ⊂ Th(Mod(F))

39

Examples

2. Linear (positive)integer arithmetic

Let Σ = ({0/0, s/1,+/2}, {≤ /2})

Let Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

3. Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

40

Examples

4. Lists

Let Σ = ({car/1, cdr/1, cons/2}, ∅)

Let F be the following set of list axioms:

car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F) class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)

41

Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A, β |= F

Solve(F): find a substitution σ such that |= Fσ

Abduce(F): find G with “certain properties” such that G

entails F

42

Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A, β |= F

Solve(F): find a substitution σ such that |= Fσ

Abduce(F): find G with “certain properties” such that G

entails F

43

