Decision Procedures for Verification

First-Order Logic (2)

25.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Question: Oral or written?

When?

- **1. Termin:** first two weeks after end of lectures (16.02.15-27.02.15)
- 2. Termin: March or April.

Doodle

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Signature

A signature $\Sigma = (\Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \ge 0$, written f/n,
- Π is a set of predicate symbols p with arity $m \ge 0$, written p/m.

A many-sorted signature $\Sigma = (S, \Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- S is a set of sorts,
- Ω is a set of function symbols f with arity $a(f) = s_1 \dots s_n \rightarrow s$,
- Π is a set of predicate symbols p with arity $a(p) = s_1 \dots s_m$

where s_1, \ldots, s_n, s_m, s are sorts.

Variables

We assume that X is a given countably infinite set of symbols which we use for (the denotation of) variables.

Many-sorted case:

We assume that for every sort $s \in S$, X_s is a given countably infinite set of symbols which we use for (the denotation of) variables of sort s.

Terms over Σ (resp., Σ -terms) are formed according to these syntactic rules:

$$t, u, v ::= x$$
, $x \in X$ (variable)
 $| f(s_1, ..., s_n)$, $f/n \in \Omega$ (functional term)

Many-sorted case:

a variable $x \in X_s$ is a term of sort sif $a(f) = s_1 \dots s_n \rightarrow s$, and t_i are terms of sort s_i , $i = 1, \dots, n$ then $f(t_1, \dots, t_n)$ is a term of sort s.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$\begin{array}{rcl} \mathsf{A},\mathsf{B} & ::= & p(t_1,...,t_m) & , \ p/m \in \Pi \\ & & & & & \\ & & & & & \\ & & & & & (\mathsf{equation}) \end{array} \end{array}$$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality.

Many-sorted case:

If $a(p) = s_1 \dots s_m$, we require that t_i is a term of sort s_i for $i = 1, \dots, m$.

Equality: Several possibilities

- \approx_s for every sort s
- $t \approx t'$ well-formed iff t and t' are terms of the same sort
- No restrictions (restrictions only on the semantic level)

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

F, G, H	::=	\perp	(falsum)
		Т	(verum)
		A	(atomic formula)
		$\neg F$	(negation)
		$(F \land G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		$(F \rightarrow G)$	(implication)
		$(F \leftrightarrow G)$	(equivalence)
		$\forall x F$	(universal quantification)
		$\exists x F$	(existential quantification)

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with *a*, *b*, *c*, *d*, ...

function symbols with arity ≥ 1 are denoted

- f, g, h, ... if the formulae are interpreted into arbitrary algebras
- +, -, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P, Q, R, S, ...

predicate symbols with arity ≥ 1 are denoted

- p, q, r, ... if the formulae are interpreted into arbitrary algebras
- \leq , \geq , <, > if the intended interpretation is into numerical domains

variables are denoted x, y, z, ...

In $Q \times F$, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier $Q \times A$. An *occurrence* of a variable x is called **bound**, if it is inside the scope of a quantifier $Q \times A$.

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Bound and Free Variables

Example:

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$\sigma: X \to \mathsf{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in dom(\sigma)$, is denoted by $codom(\sigma)$.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$\sigma: X \to \mathsf{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in dom(\sigma)$, is denoted by $codom(\sigma)$.

Many-sorted case: Substitutions must be sort-preserving: If x is a variable of sort s, then $\sigma(x)$ must be a term of sort s.

Substitutions

Substitutions are often written as $[s_1/x_1, \ldots, s_n/x_n]$, with x_i pairwise distinct, and then denote the mapping

$$[s_1/x_1, \ldots, s_n/x_n](y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of σ are not *captured* upon placing them into the scope of a quantifier Qy, hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

"Homomorphic" extension of σ to terms and formulas:

$$f(s_1, \ldots, s_n)\sigma = f(s_1\sigma, \ldots, s_n\sigma)$$

$$\perp \sigma = \perp$$

$$\top \sigma = \top$$

$$p(s_1, \ldots, s_n)\sigma = p(s_1\sigma, \ldots, s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$

$$\neg F\sigma = \neg (F\sigma)$$

$$(F\rho G)\sigma = (F\sigma \rho G\sigma) ; \text{ for each binary connective } \rho$$

$$(Qx F)\sigma = Qz (F [x \mapsto z]\sigma) ; \text{ with } z \text{ a fresh variable}$$

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0, respectively.

Structures

A Σ -algebra (also called Σ -interpretation or Σ -structure) is a triple

$$\mathcal{A} = (U, (f_{\mathcal{A}} : U^n \rightarrow U)_{f/n \in \Omega}, (p_{\mathcal{A}} \subseteq U^m)_{p/m \in \Pi})$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A} .

Normally, by abuse of notation, we will have \mathcal{A} denote both the algebra and its universe.

By Σ -Alg we denote the class of all Σ -algebras.

Structures

A Σ -algebra (also called Σ -interpretation or Σ -structure) is a triple

$$\mathcal{A} = (U, (f_{\mathcal{A}} : U^n \rightarrow U)_{f/n \in \Omega}, (p_{\mathcal{A}} \subseteq U^m)_{p/m \in \Pi})$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A} .

Normally, by abuse of notation, we will have \mathcal{A} denote both the algebra and its universe.

By Σ -Alg we denote the class of all Σ -algebras.

A many-sorted Σ -algebra (also called Σ -interpretation or Σ -structure), where $\Sigma = (S, \Omega, \Pi)$ is a triple

$$\mathcal{A} = \left(\{ U_s \}_{s \in S}, (f_{\mathcal{A}} : U_{s_1} \times \ldots \times U_{s_n} \to U_s)_{\substack{f \in \Omega, \\ a(f) = s_1 \ldots s_n \to s}} (p_{\mathcal{A}} : U_{s_1} \times \ldots \times U_{s_m} \to \{0, 1\})_{\substack{p \in \Pi \\ a(p) = s_1 \ldots s_m}} \right)$$

where $U_s \neq \emptyset$ is a set, called the universe of \mathcal{A} of sort s.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ -algebra \mathcal{A}), is a map $\beta : X \to \mathcal{A}$.

Variable assignments are the semantic counterparts of substitutions.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ -algebra \mathcal{A}), is a map $\beta : X \to \mathcal{A}$.

Variable assignments are the semantic counterparts of substitutions.

Many-sorted case:

 $eta = \{eta_s\}_{s\in S}$, $eta_s: X_s
ightarrow U_s$

Value of a Term in ${\cal A}$ with Respect to β

By structural induction we define

$$\mathcal{A}(\beta) : \mathsf{T}_{\Sigma}(X) \to \mathcal{A}$$

as follows:

$$\mathcal{A}(\beta)(x) = \beta(x), \qquad x \in X$$

 $\mathcal{A}(\beta)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)), \qquad f/n \in \Omega$

Value of a Term in ${\cal A}$ with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a] : X \to A$, for $x \in X$ and $a \in A$, denote the assignment

$$eta[x\mapsto a](y):=egin{cases} a & ext{if } x=y\ eta(y) & ext{otherwise} \end{cases}$$

 $\mathcal{A}(\beta) : \mathsf{F}_{\Sigma}(X) \to \{0, 1\}$ is defined inductively as follows:

$$\begin{aligned} \mathcal{A}(\beta)(\bot) &= 0\\ \mathcal{A}(\beta)(\top) &= 1\\ \mathcal{A}(\beta)(p(s_1, \dots, s_n)) &= 1 \quad \Leftrightarrow \quad (\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)) \in p_{\mathcal{A}}\\ \mathcal{A}(\beta)(s \approx t) &= 1 \quad \Leftrightarrow \quad \mathcal{A}(\beta)(s) = \mathcal{A}(\beta)(t)\\ \mathcal{A}(\beta)(\neg F) &= 1 \quad \Leftrightarrow \quad \mathcal{A}(\beta)(F) = 0\\ \mathcal{A}(\beta)(F\rho G) &= B_{\rho}(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))\\ & \text{ with } B_{\rho} \text{ the Boolean function associated with } \rho\\ \mathcal{A}(\beta)(\forall xF) &= \min_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\}\\ \mathcal{A}(\beta)(\exists xF) &= \max_{a \in U} \{\mathcal{A}(\beta[x \mapsto a])(F)\} \end{aligned}$$

Example

The "Standard" Interpretation for Peano Arithmetic:

$$\begin{array}{lcl} U_{\mathbb{N}} &=& \{0, 1, 2, \ldots\} \\ 0_{\mathbb{N}} &=& 0 \\ s_{\mathbb{N}} &:& n \mapsto n+1 \\ +_{\mathbb{N}} &:& (n, m) \mapsto n+m \\ *_{\mathbb{N}} &:& (n, m) \mapsto n * m \\ \leq_{\mathbb{N}} &=& \{(n, m) \mid n \text{ less than or equal to } m\} \\ <_{\mathbb{N}} &=& \{(n, m) \mid n \text{ less than } m\} \end{array}$$

Note that \mathbb{N} is just one out of many possible Σ_{PA} -interpretations.

Example

Values over $\ensuremath{\mathbb{N}}$ for Sample Terms and Formulas:

Under the assignment $\beta : x \mapsto 1, y \mapsto 3$ we obtain

$$\mathbb{N}(\beta)(s(x)+s(0)) = 3$$

$$\mathbb{N}(\beta)(x+y\approx s(y)) = 1$$

$$\mathbb{N}(eta)(orall x, y(x+ypprox y+x)) = 1$$

$$\mathbb{N}(\beta)(\forall z \ z \leq y) \qquad = 0$$

$$\mathbb{N}(\beta)(\forall x \exists y \ x < y) = 1$$

F is valid in A under assignment β :

$$\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) = 1$$

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F$$
, for all $\beta \in X \to U_{\mathcal{A}}$

F is valid (or is a tautology):

$$\models$$
 F : \Leftrightarrow $\mathcal{A} \models$ *F*, for all $\mathcal{A} \in \Sigma$ -alg

F is called satisfiable iff there exist A and β such that $A, \beta \models F$. Otherwise *F* is called unsatisfiable. The following propositions, to be proved by structural induction, hold for all Σ -algebras \mathcal{A} , assignments β , and substitutions σ .

Lemma 2.3: For any Σ -term t

$$\mathcal{A}(eta)(t\sigma)=\mathcal{A}(eta\circ\sigma)(t)$$
 ,

where $\beta \circ \sigma : X \to A$ is the assignment $\beta \circ \sigma(x) = A(\beta)(x\sigma)$.

Proposition 2.4: For any Σ -formula F, $\mathcal{A}(\beta)(F\sigma) = \mathcal{A}(\beta \circ \sigma)(F)$.

Corollary 2.5: $\mathcal{A}, \beta \models F\sigma \iff \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$

:
$$\Leftrightarrow$$
 for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$,
whenever $\mathcal{A}, \beta \models F$ then $\mathcal{A}, \beta \models G$.

F and G are called equivalent

: \Leftrightarrow for all $\mathcal{A} \in \Sigma$ -alg und $\beta \in X \to U_{\mathcal{A}}$ we have $\mathcal{A}, \beta \models F \iff \mathcal{A}, \beta \models G$.

Entailment and Equivalence

Proposition 2.6: F entails G iff $(F \rightarrow G)$ is valid

Proposition 2.7:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$

: \Leftrightarrow for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models G$, for all $G \in N$, then $\mathcal{A}, \beta \models F$. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.8:

```
F valid \Leftrightarrow \neg F unsatisfiable
```

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.8:

$$F$$
 valid $\Leftrightarrow \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Answer:

 $N \models F$ iff there is no structure \mathcal{A} and no assignment $\beta : X \to U_{\mathcal{A}}$ with $\mathcal{A}(\beta)(G) = 1$ for all $G \in N \cup \{\neg F\}$ iff $N \cup \{\neg F\}$ is unsatisfiable. Let $\mathcal{A} \in \Sigma$ -alg. The (first-order) theory of \mathcal{A} is defined as

$$Th(\mathcal{A}) = \{ G \in \mathsf{F}_{\Sigma}(X) \mid \mathcal{A} \models G \}$$

Problem of axiomatizability:

For which structures \mathcal{A} can one axiomatize $Th(\mathcal{A})$, that is, can one write down a formula F (or a recursively enumerable set F of formulas) such that

$$Th(\mathcal{A}) = \{G \mid F \models G\}?$$

Analogously for sets of structures.

Let $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \emptyset)$ and $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +)$ its standard interpretation on the integers.

 $Th(\mathbb{Z}_+)$ is called Presburger arithmetic (M. Presburger, 1929). (There is no essential difference when one, instead of \mathbb{Z} , considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \ge 0$ such that $Th(\mathbb{Z}_+) \not\in \mathsf{NTIME}(2^{2^{cn}})$).

However, $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *)$, the standard interpretation of $\Sigma_{PA} = (\{0/0, s/1, +/2, */2\}, \emptyset)$, has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae. the models of \mathcal{F} : $\mathsf{Mod}(\mathcal{F}) = \{\mathcal{A} \in \Sigma\text{-}\mathsf{alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

Semantic view

given a class ${\mathcal M}$ of $\Sigma\text{-algebras}$

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Theories

 ${\cal F}$ set of (closed) first-order formulae

 $Mod(\mathcal{F}) = \{A \in \Sigma\text{-}alg \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

 ${\mathcal M}$ class of $\Sigma\text{-algebras}$

 $\mathsf{Th}(\mathcal{M}) = \{ G \in F_{\Sigma}(X) \text{ closed } \mid \mathcal{M} \models G \}$

 $\begin{aligned} \mathsf{Th}(\mathsf{Mod}(\mathcal{F})) \text{ the set of formulae true in all models of } \mathcal{F} \\ \text{ represents exactly the set of consequences of } \mathcal{F} \end{aligned}$

Theories

 \mathcal{F} set of (closed) first-order formulae Mod $(\mathcal{F}) = \{A \in \Sigma \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

 ${\mathcal M}$ class of $\Sigma\text{-algebras}$

 $\mathsf{Th}(\mathcal{M}) = \{ G \in F_{\Sigma}(X) \text{ closed } \mid \mathcal{M} \models G \}$

 $\mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Note: $\mathcal{F} \subseteq \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ (typically strict) $\mathcal{M} \subseteq \mathsf{Mod}(\mathsf{Th}(\mathcal{M}))$ (typically strict)

Examples

1. Groups

Let $\Sigma = (\{e/0, */2, i/1\}, \emptyset)$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\begin{array}{lll} \forall x, y, z & x * (y * z) \approx (x * y) * z \\ \forall x & x * i(x) \approx e & \wedge & i(x) * x \approx e \\ \forall x & x * e \approx x & \wedge & e * x \approx x \end{array}$$

Every group $\mathcal{G} = (G, e_G, *_G, i_G)$ is a model of \mathcal{F}

 $\mathsf{Mod}(\mathcal{F})$ is the class of all groups $\mathcal{F}\subset\mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$

Examples

2. Linear (positive)integer arithmetic

Let $\Sigma = (\{0/0, s/1, +/2\}, \{\leq /2\})$ Let $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers. $\{\mathbb{Z}_+\} \subset Mod(Th(\mathbb{Z}_+))$

3. Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma$ -alg be the class of all Σ -structures

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

Examples

4. Lists

Let
$$\Sigma = (\{\operatorname{car}/1, \operatorname{cdr}/1, \operatorname{cons}/2\}, \emptyset)$$

Let ${\mathcal F}$ be the following set of list axioms:

$$car(cons(x, y)) \approx x$$

 $cdr(cons(x, y)) \approx y$
 $cons(car(x), cdr(x)) \approx x$

 $\mathsf{Mod}(\mathcal{F})$ class of all models of \mathcal{F}

 $\mathsf{Th}_{\mathsf{Lists}} = \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ theory of lists (axiomatized by \mathcal{F})

Validity(F): $\models F$?

Satisfiability(*F*): *F* satisfiable?

Entailment(*F*,*G*): does *F* entail *G*?

Model(\mathcal{A} , \mathcal{F}): $\mathcal{A} \models \mathcal{F}$?

Solve(A,F): find an assignment β such that A, $\beta \models F$

Solve(*F*): find a substitution σ such that $\models F\sigma$

Abduce(*F*): find *G* with "certain properties" such that *G* entails *F*

Validity(F): $\models F$?

Satisfiability(*F*): *F* **satisfiable**?

Entailment(*F*,*G*): does *F* entail *G*?

Model(\mathcal{A} , \mathcal{F}): $\mathcal{A} \models \mathcal{F}$?

Solve(A,F): find an assignment β such that A, $\beta \models F$

Solve(*F*): find a substitution σ such that $\models F\sigma$

Abduce(*F*): find *G* with "certain properties" such that *G* entails *F*