Decision Procedures for Verification

First-Order Logic (2)

25.11.2014

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Exam

Question: Oral or written?

When?

1. Termin: first two weeks after end of lectures
(16.02.15-27.02.15)
2. Termin: March or April.

Doodle

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Signature

A signature $\Sigma=(\Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$, written f / n,
- Π is a set of predicate symbols p with arity $m \geq 0$, written p / m.

A many-sorted signature $\Sigma=(S, \Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- S is a set of sorts,
- Ω is a set of function symbols f with arity $a(f)=s_{1} \ldots s_{n} \rightarrow s$,
- Π is a set of predicate symbols p with arity $a(p)=s_{1} \ldots s_{m}$ where $s_{1}, \ldots, s_{n}, s_{m}, s$ are sorts.

Variables

We assume that X is a given countably infinite set of symbols which we use for (the denotation of) variables.

Many-sorted case:
We assume that for every sort $s \in S, X_{s}$ is a given countably infinite set of symbols which we use for (the denotation of) variables of sort s.

Terms, Atoms, Formulae

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

$$
\begin{array}{rlllr}
t, u, v & ::= & x & , x \in X & \text { (variable) } \\
& \mid & f\left(s_{1}, \ldots, s_{n}\right) & , f / n \in \Omega & \text { (functional term) }
\end{array}
$$

Many-sorted case:
a variable $x \in X_{s}$ is a term of sort s
if $a(f)=s_{1} \ldots s_{n} \rightarrow s$, and t_{i} are terms of sort $s_{i}, i=1, \ldots, n$ then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term of sort s.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$
\left.\begin{array}{cll}
A, B & ::=p\left(t_{1}, \ldots, t_{m}\right) & , p / m \in \Pi \\
{\left[\begin{array}{cl}
\mid & \left(t \approx t^{\prime}\right)
\end{array}\right.} & \text { (equation) }
\end{array}\right]
$$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality.

Many-sorted case:
If $a(p)=s_{1} \ldots s_{m}$, we require that t_{i} is a term of sort s_{i} for $i=1, \ldots, m$.
Equality: Several possibilities

- \approx_{s} for every sort s
- $t \approx t^{\prime}$ well-formed iff t and t^{\prime} are terms of the same sort
- No restrictions (restrictions only on the semantic level)

General First-Order Formulas

$F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$$
\begin{array}{rll}
F, G, H & ::= & \perp \\
& T & T \\
& A \\
& \neg F \\
& (F \wedge G) \\
& (F \vee G) \\
& (F \rightarrow G) \\
& (F \leftrightarrow G) \\
& \forall \times F \\
& \exists x F
\end{array}
$$

Conventions

In what follows we will use the following conventions:
constants (0-ary function symbols) are denoted with a, b, c, d, \ldots
function symbols with arity ≥ 1 are denoted

- f, g, h, \ldots if the formulae are interpreted into arbitrary algebras
- $+,-, s, \ldots$ if the intended interpretation is into numerical domains
predicate symbols with arity 0 are denoted P, Q, R, S, \ldots
predicate symbols with arity ≥ 1 are denoted
- p, q, r, \ldots if the formulae are interpreted into arbitrary algebras
- $\leq, \geq,<,>$ if the intended interpretation is into numerical domains
variables are denoted x, y, z, \ldots

Bound and Free Variables

In $Q x F, Q \in\{\exists, \forall\}$, we call F the scope of the quantifier $Q x$.
An occurrence of a variable x is called bound, if it is inside the scope of a quantifier $Q x$.
Any other occurrence of a variable is called free.
Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Bound and Free Variables

Example:

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$
\sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)
$$

such that the domain of σ, that is, the set

$$
\operatorname{dom}(\sigma)=\{x \in X \mid \sigma(x) \neq x\}
$$

is finite. The set of variables introduced by σ, that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \operatorname{dom}(\sigma)$, is denoted by $\operatorname{codom}(\sigma)$.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

In general, substitutions are mappings

$$
\sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)
$$

such that the domain of σ, that is, the set

$$
\operatorname{dom}(\sigma)=\{x \in X \mid \sigma(x) \neq x\}
$$

is finite. The set of variables introduced by σ, that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \operatorname{dom}(\sigma)$, is denoted by $\operatorname{codom}(\sigma)$.

Many-sorted case: Substitutions must be sort-preserving: If x is a variable of sort s, then $\sigma(x)$ must be a term of sort s.

Substitutions

Substitutions are often written as $\left[s_{1} / x_{1}, \ldots, s_{n} / x_{n}\right]$, with x_{i} pairwise distinct, and then denote the mapping

$$
\left[s_{1} / x_{1}, \ldots, s_{n} / x_{n}\right](y)= \begin{cases}s_{i}, & \text { if } y=x_{i} \\ y, & \text { otherwise }\end{cases}
$$

We also write $x \sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$
\sigma[x \mapsto t](y)= \begin{cases}t, & \text { if } y=x \\ \sigma(y), & \text { otherwise }\end{cases}
$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations depicted on the next page.

In the presence of quantification it is surprisingly complex:
We need to make sure that the (free) variables in the codomain of σ are not captured upon placing them into the scope of a quantifier $Q y$, hence the bound variable must be renamed into a "fresh", that is, previously unused, variable z.

Application of a Substitution

"Homomorphic" extension of σ to terms and formulas:

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \sigma & =f\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
\perp \sigma & =\perp \\
\top \sigma & =\top \\
p\left(s_{1}, \ldots, s_{n}\right) \sigma & =p\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
(u \approx v) \sigma & =(u \sigma \approx v \sigma) \\
\neg F \sigma & =\neg(F \sigma) \\
(F \rho G) \sigma & =(F \sigma \rho G \sigma) ; \text { for each binary connective } \rho \\
(Q \times F) \sigma & =Q z(F[x \mapsto z] \sigma) ; \text { with } z \text { a fresh variable }
\end{aligned}
$$

2.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0 , respectively.

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}} \subseteq U^{m}\right)_{p / m \in \Pi}\right)
$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A}.
Normally, by abuse of notation, we will have \mathcal{A} denote both the algebra and its universe.

By Σ-Alg we denote the class of all Σ-algebras.

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}} \subseteq U^{m}\right)_{p / m \in \Pi}\right)
$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A}.
Normally, by abuse of notation, we will have \mathcal{A} denote both the algebra and its universe.

By Σ-Alg we denote the class of all Σ-algebras.

A many-sorted Σ-algebra (also called Σ-interpretation or Σ-structure), where $\Sigma=(S, \Omega, \Pi)$ is a triple
$\mathcal{A}=\left(\left\{U_{s}\right\}_{s \in S},\left(f_{\mathcal{A}}: U_{s_{1}} \times \ldots \times U_{s_{n}} \rightarrow \underset{\substack{U_{s} \\ a(f)=s_{1} \ldots s_{n} \rightarrow s}}{\substack{f \in \Omega,\left(p_{\mathcal{A}}\right.}} U_{s_{1}} \times \ldots \times U_{s_{m}} \rightarrow\{0,1\} \underset{\substack{p(p)=s_{1} \ldots s_{m}}}{ }\right)\right.$
where $U_{s} \neq \emptyset$ is a set, called the universe of \mathcal{A} of sort s.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra \mathcal{A}), is a $\operatorname{map} \beta: X \rightarrow \mathcal{A}$.

Variable assignments are the semantic counterparts of substitutions.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra \mathcal{A}), is a $\operatorname{map} \beta: X \rightarrow \mathcal{A}$.

Variable assignments are the semantic counterparts of substitutions.

Many-sorted case:
$\beta=\left\{\beta_{s}\right\}_{s \in S}, \beta_{s}: X_{s} \rightarrow U_{s}$

Value of a Term in \mathcal{A} with Respect to β

By structural induction we define

$$
\mathcal{A}(\beta): \mathrm{T}_{\Sigma}(X) \rightarrow \mathcal{A}
$$

as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(x) & =\beta(x), \quad x \in X \\
\mathcal{A}(\beta)\left(f\left(s_{1}, \ldots, s_{n}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right), \quad f / n \in \Omega
\end{aligned}
$$

Value of a Term in \mathcal{A} with Respect to β

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a]: X \rightarrow \mathcal{A}$, for $x \in X$ and $a \in \mathcal{A}$, denote the assignment

$$
\beta[x \mapsto a](y):= \begin{cases}a & \text { if } x=y \\ \beta(y) & \text { otherwise }\end{cases}
$$

Truth Value of a Formula in \mathcal{A} with Respect to β

$\mathcal{A}(\beta): \mathrm{F}_{\Sigma}(X) \rightarrow\{0,1\}$ is defined inductively as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(\perp) & =0 \\
\mathcal{A}(\beta)(\top) & =1 \\
\mathcal{A}(\beta)\left(p\left(s_{1}, \ldots, s_{n}\right)\right) & =1 \quad \Leftrightarrow \quad\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right) \in p_{\mathcal{A}} \\
\mathcal{A}(\beta)(s \approx t) & =1 \quad \Leftrightarrow \mathcal{A}(\beta)(s)=\mathcal{A}(\beta)(t) \\
\mathcal{A}(\beta)(\neg F) & =1 \quad \Leftrightarrow \mathcal{A}(\beta)(F)=0 \\
\mathcal{A}(\beta)(F \rho G) & =\mathrm{B}_{\rho}(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G)) \\
& \text { with } \mathrm{B}_{\rho} \text { the Boolean function associated with } \rho \\
\mathcal{A}(\beta)(\forall x F) & =\min _{a \in U}\{\mathcal{A}(\beta[x \mapsto a])(F)\} \\
\mathcal{A}(\beta)(\exists x F) & =\max _{a \in U}\{\mathcal{A}(\beta[x \mapsto a])(F)\}
\end{aligned}
$$

Example

The "Standard" Interpretation for Peano Arithmetic:

$$
\begin{aligned}
U_{\mathbb{N}} & =\{0,1,2, \ldots\} \\
0_{\mathbb{N}} & =0 \\
s_{\mathbb{N}} & : n \mapsto n+1 \\
+_{\mathbb{N}} & :(n, m) \mapsto n+m \\
*_{\mathbb{N}} & :(n, m) \mapsto n * m \\
\leq_{\mathbb{N}} & =\{(n, m) \mid n \text { less than or equal to } m\} \\
<_{\mathbb{N}} & =\{(n, m) \mid n \text { less than } m\}
\end{aligned}
$$

Note that \mathbb{N} is just one out of many possible $\Sigma_{P A}$-interpretations.

Example

Values over \mathbb{N} for Sample Terms and Formulas:
Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$
\begin{array}{ll}
\mathbb{N}(\beta)(s(x)+s(0)) & =3 \\
\mathbb{N}(\beta)(x+y \approx s(y)) & =1 \\
\mathbb{N}(\beta)(\forall x, y(x+y \approx y+x)) & =1 \\
\mathbb{N}(\beta)(\forall z z \leq y) & =0 \\
\mathbb{N}(\beta)(\forall x \exists y x<y) & =1
\end{array}
$$

2.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models F \quad: \Leftrightarrow \mathcal{A}(\beta)(F)=1
$$

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F)$:

$$
\mathcal{A} \models F \quad: \Leftrightarrow \quad \mathcal{A}, \beta \models F, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid (or is a tautology):

$$
\models F \quad: \Leftrightarrow \quad \mathcal{A} \models F, \text { for all } \mathcal{A} \in \Sigma \text {-alg }
$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras \mathcal{A}, assignments β, and substitutions σ.

Lemma 2.3: For any Σ-term t

$$
\mathcal{A}(\beta)(t \sigma)=\mathcal{A}(\beta \circ \sigma)(t)
$$

where $\beta \circ \sigma: X \rightarrow \mathcal{A}$ is the assignment $\beta \circ \sigma(x)=\mathcal{A}(\beta)(x \sigma)$.

Proposition 2.4: For any Σ-formula $F, \mathcal{A}(\beta)(F \sigma)=\mathcal{A}(\beta \circ \sigma)(F)$.

Corollary 2.5: $\mathcal{A}, \beta \models F \sigma \Leftrightarrow \mathcal{A}, \beta \circ \sigma \models F$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$
$: \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$-alg and $\beta \in X \rightarrow U_{\mathcal{A}}$, whenever $\mathcal{A}, \beta \models F$ then $\mathcal{A}, \beta \models G$.
F and G are called equivalent
$: \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$-alg und $\beta \in X \rightarrow U_{\mathcal{A}}$ we have
$\mathcal{A}, \beta \models F \quad \Leftrightarrow \quad \mathcal{A}, \beta \models G$.

Entailment and Equivalence

Proposition 2.6:
F entails G iff $(F \rightarrow G)$ is valid

Proposition 2.7:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$
$: \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$-alg and $\beta \in X \rightarrow U_{\mathcal{A}}$: if $\mathcal{A}, \beta \models G$, for all $G \in N$, then $\mathcal{A}, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.8:

$$
F \text { valid } \Leftrightarrow \neg F \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Q : In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 2.8:

$$
F \text { valid } \Leftrightarrow \neg F \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Q : In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Answer:
$N \models F \quad$ iff \quad there is no structure \mathcal{A} and no assignment $\beta: X \rightarrow U_{\mathcal{A}}$ with $\mathcal{A}(\beta)(G)=1$ for all $G \in N \cup\{\neg F\}$
iff $N \cup\{\neg F\}$ is unsatisfiable.

Theory of a Structure

Let $\mathcal{A} \in \Sigma$-alg. The (first-order) theory of \mathcal{A} is defined as

$$
T h(\mathcal{A})=\left\{G \in F_{\Sigma}(X) \mid \mathcal{A} \models G\right\}
$$

Problem of axiomatizability:
For which structures \mathcal{A} can one axiomatize $\operatorname{Th}(\mathcal{A})$, that is, can one write down a formula F (or a recursively enumerable set F of formulas) such that

$$
\operatorname{Th}(\mathcal{A})=\{G \mid F \models G\} ?
$$

Analogously for sets of structures.

Two Interesting Theories

Let $\Sigma_{\text {Pres }}=(\{0 / 0, s / 1,+/ 2\}, \emptyset)$ and $\mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+)$ its standard interpretation on the integers.
$T h\left(\mathbb{Z}_{+}\right)$is called Presburger arithmetic (M. Presburger, 1929).
(There is no essential difference when one, instead of \mathbb{Z}, considers the natural numbers \mathbb{N} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \notin \operatorname{NTIME}\left(2^{2^{c n}}\right)$).

Two Interesting Theories

However, $\mathbb{N}_{*}=(\mathbb{N}, 0, s,+, *)$, the standard interpretation of $\Sigma_{P A}=$ $(\{0 / 0, s / 1,+/ 2, * / 2\}, \emptyset)$, has as theory the so-called Peano arithmetic which is undecidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the computational complexity of theories.

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ-formulae.
the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \vDash G$, for all G in $\mathcal{F}\}$

Semantic view

given a class \mathcal{M} of Σ-algebras
the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$

Theories

\mathcal{F} set of (closed) first-order formulae
$\operatorname{Mod}(\mathcal{F})=\{A \in \Sigma$-alg $\mid \mathcal{A} \models G$, for all G in $\mathcal{F}\}$
\mathcal{M} class of Σ-algebras
$\operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$
$\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Theories

\mathcal{F} set of (closed) first-order formulae

$$
\operatorname{Mod}(\mathcal{F})=\{A \in \Sigma \text {-alg } \mid \mathcal{A} \models G, \text { for all } G \text { in } \mathcal{F}\}
$$

\mathcal{M} class of Σ-algebras

$$
\operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X) \text { closed } \mid \mathcal{M} \models G\right\}
$$

$\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Note: $\begin{aligned} \mathcal{F} & \subseteq \operatorname{Th}(\operatorname{Mod}(\mathcal{F})) & & \text { (typically strict) } \\ \mathcal{M} & \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{M})) & & \text { (typically strict) }\end{aligned}$

Examples

1. Groups

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rlrl}
\forall x, y, z & x *(y * z) & \approx(x * y) * z \\
\forall x & x * i(x) & \approx e \wedge i(x) * x \approx e \\
\forall x & x * e & \approx x \wedge e * x \approx x
\end{array}
$$

Every group $\mathcal{G}=\left(G, e_{G}, *_{G}, i_{G}\right)$ is a model of \mathcal{F}
$\operatorname{Mod}(\mathcal{F})$ is the class of all groups
$\mathcal{F} \subset \operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$

Examples

2. Linear (positive)integer arithmetic

Let $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{\leq / 2\})$
Let $\mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.
$\left\{\mathbb{Z}_{+}\right\} \subset \operatorname{Mod}\left(\operatorname{Th}\left(\mathbb{Z}_{+}\right)\right)$

3. Uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\mathrm{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.

Examples

4. Lists

Let $\Sigma=(\{\mathrm{car} / 1, \mathrm{cdr} / 1$, cons $/ 2\}, \emptyset)$
Let \mathcal{F} be the following set of list axioms:

$$
\begin{aligned}
\operatorname{car}(\operatorname{cons}(x, y)) & \approx x \\
\operatorname{cdr}(\operatorname{cons}(x, y)) & \approx y \\
\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) & \approx x
\end{aligned}
$$

$\operatorname{Mod}(\mathcal{F})$ class of all models of \mathcal{F}
$\operatorname{Th}_{\text {Lists }}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ theory of lists (axiomatized by $\left.\mathcal{F}\right)$

Algorithmic Problems

Validity (F): $\vDash F$?
Satisfiability (F) : F satisfiable?
Entailment (F, G) : does F entail G ?
$\operatorname{Model}(\mathcal{A}, F): \quad \mathcal{A} \models F$?
$\operatorname{Solve}(\mathcal{A}, F)$: find an assignment β such that $\mathcal{A}, \beta \models F$
Solve(F): find a substitution σ such that $\models F \sigma$
Abduce (F) : find G with "certain properties" such that G entails F

Algorithmic Problems

Validity (F): $\vDash F$?
Satisfiability (F) : F satisfiable?
Entailment (F, G) : does F entail G ?
$\operatorname{Model}(\mathcal{A}, F): \quad \mathcal{A} \vDash F$?
$\operatorname{Solve}(\mathcal{A}, F)$: find an assignment β such that $\mathcal{A}, \beta \models F$
Solve(F): find a substitution σ such that $\models F \sigma$
Abduce (F) : find G with "certain properties" such that G entails F

