
Decision Procedures for Verification

First-Order Logic (3)

2.12.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

2

2.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A, β |= F

Solve(F): find a substitution σ such that |= Fσ

Abduce(F): find G with “certain properties” such that G

entails F

3

Decidability/Undecidability

In 1931, Gödel published his incompleteness theorems in

“Über formal unentscheidbare Sätze der

Principia Mathematica und verwandter Systeme”

(in English “On Formally Undecidable Propositions of

Principia Mathematica and Related Systems”).

He proved for any computable axiomatic system that is powerful

enough to describe the arithmetic of the natural numbers (e.g. the

Peano axioms or Zermelo-Fraenkel set theory with the axiom of

choice), that:

• If the system is consistent, it cannot be complete.

• The consistency of the axioms cannot be proven within the

system.

4

Decidability/Undecidability

These theorems ended a half-century of attempts, beginning with the

work of Frege and culminating in Principia Mathematica and Hilbert’s

formalism, to find a set of axioms sufficient for all mathematics.

The incompleteness theorems also imply that not all mathematical

questions are computable.

5

Consequences of Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(We will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

These undecidability results motivate the study of subclasses of

formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which

validity is decidable?

6

Some Decidable Fragments/Problems

Validity/Satisfiability/Entailment: Some decidable fragments:

• Variable-free formulas without equality:

satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Q: Other decidable fragments of FOL (with variables)?

Which methods for proving decidability?

7

Goals

Identify:

• decidable fragments of first-order logic

• fragments of FOL for which satisfiability checking is easy

Methods:

• Theoretical methods (automata theory, finite model property)

• Adjust automated reasoning techniques

(e.g. to obtaining efficient decision procedures)

Extend methods for automated reasoning in propositional logic?

Instantiation/reduction to propositional logic

Extend the resolution calculus for first-order logic

8

Goals

Extend methods for automated reasoning in propositional logic?

Instantiation/reduction to propositional logic

Extend the resolution calculus for first-order logic

Ingredients:

- Give a method for translating formulae to clause form

- Regard formulae with variables as a set of all their instances

(where variables are instantiated with ground terms)

- Show that only certain instances are needed

7→ reduction to propositional logic

- Finite encoding of infinitely many inferences

7→ resolution for first-order logic

9

2.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The

subsequent normal form transformations are intended to eliminate many of

them.

10

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of

the formula.

11

Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x] → G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G [y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

12

Example

F := (∀x((p(x)∨ q(x , y))∧∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

13

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′ ((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

14

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

15

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ (((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y

16

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y

17

Example

F := (∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))) → ((p(z)∧ q(x , z))∧∀z r(z, x , y))

⇒P ∃x′((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z, x , y))

⇒P ∃x′∀z′ ((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y

⇒P ∃x′∀z′∀z′′(((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ r(z′′, x ,

18

Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).

19

Skolemization

Together: F
∗

⇒P G
︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 2.9:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-alg) ⇔ H satisfiable (wrt. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).

20

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F)

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity

of ∧ and ∨. The first five rules, plus the rule (¬Q), compute the

negation normal form (NNF) of a formula.

21

The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)
∗

⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

Theorem 2.10:

Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 2.11:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is satisfiable

22

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y(q(w , x , y) ∧ ∃z r(y , z))))

23

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

24

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))

25

Example

Given: ∃u∀w(∃x(p(w , x , u) ∨ ∀y (q(w , x , y) ∧ ∃z r(y , z))))

Prenex Normal Form:

∗
⇒P ∃u∀w∃x∀y∃z((p(w , x , u) ∨ (q(w , x , y) ∧ r(y , z))))

Skolemisation:

∗
⇒S ∀w∀y((p(w , skx (w), sku) ∨ (q(w , skx (w), y) ∧ r(y , g(w , y)))))

Clause normal form:

∗
⇒K ∀w∀y [(p(w , skx (w), sku)∨q(w , skx (w), y))∧(p(w , skx (w), sku)∨r(y , g(w , y)))]

Set of clauses:

{p(w , skx (w), sku)∨q(w , skx (w), y), p(w , skx (w), sku)∨r(y , g(w , y))}

26

Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions.

27

2.6 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall

contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

28

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.

29

Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

30

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set

of ground instances of N.

(Proof – completeness proof of resolution for first-order logic.)

31

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .

32

Consequences of Herbrans’s theorem

Decidability results.

• Formulae without function symbols and without equality

The Bernays-Schönfinkel Class ∃∗∀∗

33

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

34

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Theorem 2.14 Checking satisfiability of conjunctions of formulae in the

Bernays-Schönfinkel class is decidable.

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒P ∃x1 . . . ∃xn∀y1 . . .∀ynF (x1, . . . , xn, y1, . . . , yn)

⇒S ∀y1 . . .∀ymF (c1, . . . , cn, y1, . . . , yn)

⇒K ∀y1 . . .∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

35

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Theorem 2.14 Checking satisfiability of conjunctions of formulae in the

Bernays-Schönfinkel class is decidable.

Idea: CNF translation:

∃x1∀y1F1 ∧ . . .∃xn∀ynFn

⇒∗

K ∀y1 . . .∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

The Herbrand Universe is finite 7→ decidability

36

Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

37

Variable-free Horn clauses
Data structures

Atoms P1, . . . ,Pn 7→ {1, . . . , n}

neg-occ-list(A): list of all clauses in which A occurs negatively

pos-occ-list(A): list of all clauses in which A occurs positively

Clause: P1 P2 . . . Pn counter

neg neg pos ↑

↑ number of literals

first-active-literal (fal): first literal not marked as deleted.

atom status: pos (deduced as positive unit clause)

neg (deduced as negative unit clause)

nounit (otherwise)

38

Variable-free Horn clauses

Input: Set N of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist

forall C ∈ N do

if is-unit(C) then begin const. time

L := first-active-literal(C) const. time

if state(atom(L)) = nounit then state(atom(L)) = sign(L) const. time

push(atom(L), stack)

else if state(atom(L)) 6= sign(L) then return false

39

Variable-free Horn clauses
2. Process the unit clauses in the stack

while stack 6= ∅ do

begin A := top(stack); pop(stack)

if state(A) = pos then delete-literal-list := neg-oc-list(A) O(# neg-oc-list)

else delete-literal-list := pos-oc-list(A) O(# pos-oc-list)

endif

for all C in delete-literal-list do

if state(A) = pos then delete-literal(A,C) const. time + nfal - ofal

if state(A) = neg then delete-literal(¬ A,C) const. time + nfal - ofal

if unit(C) then L1 := first-active-literal(C) const. time

if state(atom(L1)) = nounit then state(atom(L1)) = sign(L1),

L1 → stack

elseif state(atom(L1)) 6= sign(L1) then return false

endif

end

40

Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

• Similar fragment of the Bernays-Schönfinkel class?

41

Motivation: Deductive Databases

Deductive database

Inference rules:

Facts:

Query:

42

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

43

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

44

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

45

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c),R(d)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

46

Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

F |=K G iff K ∪ F |= G iff K ∪ F ∪ ¬G |=⊥

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

47

Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

Ex:

S(a) S(x) → R(x)

R(a) E(a, c) R(x) ∧ E(x , y) → R(y)

R(c) E(c, d) R(x) ∧ E(x , y) → R(

R(d)

48

Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity ≥ 1.

Given:

• Set H of (function-free) Horn clauses

• Ground Horn clause G =
∧

Ai → A.

Theorem 2.15 The following are equivalent:

(1) H |=
∧

Ai → A

(2) H ∧
∧

Ai |= A

(3) H ∧
∧

Ai ∧ ¬A |=⊥

Decidable in PTIME in the size of G for a fixed H.

49

Generalization: Local theories

[McAllester,Givan’92], [Basin,Ganzinger’96,01], [Ganzinger’01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause

C the following are equivalent:

(1) H |= C

(2) H[C] |= C ,

where H[C] is the family of all instances of H in which the variables are

replaced by ground subterms occurring in H or C .

Theorem 2.16 For a fixed local theory H, testing ground entailment w.r.t.

H is in PTIME.

Will be discussed in more detail in the exercises

50

2.7 General Resolution

Propositional resolution:

refutationally complete,

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.

51

Propositional resolution: reminder

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

52

Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

Res is sound and refutationally complete (for all sets of ground

clauses)

53

Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

54

Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

55

Resolution Calculus Res
≻
S

Ordered resolution with selection

C ∨ A D ∨ ¬A

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

56

Resolution for ground clauses

Let ≻ be a total and well-founded ordering on ground atoms, and S

a selection function.

Theorem. Res≻S is sound and refutationally complete for all sets of

ground clauses.

Soundness: sufficient to show that

(1) C ∨ A,D ∨ ¬A |= C ∨ D

(2) C ∨ A ∨ A |= C ∨ A

Completeness: Let ≻ be a clause ordering, let N be saturated

wrt. Res≻S , and suppose that ⊥ 6∈ N. Then I≻N |= N, where I≻N is

incrementally constructed as follows:

57

Construction of Candidate Models Formally

Let N,≻ be given.

• Order N increasing w.r.t. the extension of ≻ to clauses.

• Define sets IC and ∆C for all ground clauses C over the given

signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=

{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

and nothing is selected in C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C ∆C .

(We write IN for I≻N if ≻ is irrelevant or known from the context.)

58

Completeness (Reminder)

Theorem. Let ≻ be a clause ordering, let N be saturated wrt. Res≻
S
, and

suppose that ⊥ 6∈ N. Then I≻
N

|= N.

Proof: Suppose ⊥ 6∈ N, but I≻
N

6|= N. Let C ∈ N minimal (in ≻) such that

I≻
N

6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there exists

a maximal atom A in C .

1. C = ¬A ∨ C ′ (maximal atom occurs negatively) ⇒ IN |=A, IN 6 |=C ′

Then some D = D′ ∨ A ∈ N produces A. As D′
∨A ¬A∨C′

D′∨C′
, we

infer that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

2. C = ¬A ∨ C ′ (¬A is selected) ⇒ IN |=A, IN 6 |=C ′

The argument in 1. applies also in this case.

3. C = C ′ ∨ A ∨ A. Then C′
∨A∨A

C′∨A
yields a smaller counterexample

C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .

59

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

60

General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary literals.

61

Resolution Principle

Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general

atoms;

• Only compute most general (minimal) unifiers.

62

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.

63

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E if siσ = tiσ for

all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

64

Unification after Martelli/Montanari

(1) t
.
= t,E ⇒MM E

(2) f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

(3) f (. . .)
.
= g(. . .),E ⇒MM ⊥

(4) x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

(5) x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

(6) t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X

65

Examples

Example 1:

{x
.
= f (a), g(x , x)

.
= g(x , y)} ⇒4

{x
.
= f (a), g(f (a), f (a))

.
= g(f (a), y)} ⇒2

{x
.
= f (a), f (a)

.
= f (a), f (a)

.
= y} ⇒1

{x
.
= f (a), f (a)

.
= y} ⇒6

{x
.
= f (a), y

.
= f (a)}

Example 2:

{x
.
= f (a), g(x , x)

.
= h(x , y)} ⇒3⊥

Example 3:

{f (x , x)
.
= f (y , g(y))} ⇒2

{x
.
= y , x

.
= g(y)} ⇒4

{x
.
= y , y

.
= g(y)} ⇒5⊥

66

MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.18:

If E is a solved form then σE is am mgu of E .

Theorem 2.19:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

67

MM: Main Properties

Theorem 2.19:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the

case for the 4th rule here. Suppose σ is a unifier of x
.
= t, that

is, xσ = tσ. Thus, σ ◦ [t/x] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ.

Therefore, for any equation u
.
= v in E : uσ = vσ, iff

u[t/x]σ = v [t/x]σ. (2) and (3) follow by induction from (1)

using Proposition 2.18.

68

Main Unification Theorem

Theorem 2.20:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof: See e.g. Baader & Nipkow: Term rewriting and all that.

Problem: exponential growth of terms possible

Example:

E = {x1 ≈ f (x0, x0), x2 ≈ f (x1, x1), . . . , xn ≈ f (xn−1, xn−1)}

m.g.u. [x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), ...]

xi 7→ complete binart tree of heigth i

Solution: Use acyclic term graphs; union/find algorithms

69

Lifting Lemma

Lemma 2.21

Let C and D be variable-disjoint clauses. If

C

σ

��

D

ρ

��

Cσ Dρ

C ′ [propositional resolution]

then there exists a substitution τ such that

C D

C ′′

ρ

��

C ′ = C ′′
τ

[general resolution]

70

Lifting Lemma

An analogous lifting lemma holds for factorization.

71

Saturation of Sets of General Clauses

Corollary 2.22:

Let N be a set of general clauses saturated under Res, i.e.,

Res(N) ⊆ N. Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

72

Saturation of Sets of General Clauses

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-

disjoint. (Otherwise make them disjoint, and this renaming process

changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground

instances Cσ and Dρ of N with resolvent C ′, or else (ii) C ′ is a

factor of a ground instance Cσ of C .

Case (i): By the Lifting Lemma, C and D are resolvable with a

resolvent C ′′ with C ′′
τ = C ′, for a suitable substitution τ . As

C ′′ ∈ N by assumption, we obtain that C ′ ∈ GΣ(N).

Case (ii): Similar.

73

Herbrand’s Theorem

Lemma 2.23:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.24:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.

74

Herbrand’s Theorem

Theorem 2.25 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res
∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res
∗(N))

⇒ IGΣ(Res
∗(N)) |= GΣ(Res

∗(N)) (Thm. 2.23; Cor. 2.32)

⇒ IGΣ(Res
∗(N)) |= Res

∗(N) (Lemma 2.34)

⇒ IGΣ(Res
∗(N)) |= N (N ⊆ Res

∗(N))

75

Refutational Completeness of General Resolution

Theorem 2.26:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.22: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.23/2.24; Theorem 2.25)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N

76

