Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer **Propositional logic**

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
 - \Rightarrow Boolean combinations

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

 F_{Π} is the set of propositional formulas over Π defined as follows:

F, G, H	::=	\perp	(falsum)
		\top	(verum)
		P , $P\in \Pi$	(atomic formula)
		$\neg F$	(negation)
		$(F \wedge G)$	(conjunction)
		$(F \lor G)$	(disjunction)
		(F ightarrow G)	(implication)
		$(F \leftrightarrow G)$	(equivalence)

Notational Conventions

- We omit brackets according to the following rules:
 - $\neg \neg >_p \land >_p \lor \lor >_p \lor \to >_p \leftrightarrow$ (binding precedences

– $\,\vee\,$ and $\,\wedge\,$ are associative and commutative

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π -valuation is a map

 $\mathcal{A}:\Pi
ightarrow \{0,1\}.$

where $\{0, 1\}$ is the set of truth values.

Given a Π -valuation \mathcal{A} , the function $\mathcal{A}^* : \Sigma$ -formulas $\rightarrow \{0, 1\}$ is defined inductively over the structure of F as follows:

For simplicity, we write \mathcal{A} instead of \mathcal{A}^* .

Example: Let's evaluate the formula

$$(P
ightarrow Q) \land (P \land Q
ightarrow R)
ightarrow (P
ightarrow R)$$

w.r.t. the valuation \mathcal{A} with

$$\mathcal{A}(P)=1$$
, $\mathcal{A}(Q)=0$, $\mathcal{A}(R)=1$

(On the blackboard)

1.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} (\mathcal{A} is a model of F; F holds under \mathcal{A}):

```
\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1
```

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an A such that $A \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

A set *N* of formulae is satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$ for all $F \in N$. Otherwise *N* is called unsatisfiable (or contradictory).

$F = (A \lor C) \land (B \lor \neg C)$								
	A	В	С	$(A \lor C)$	$\neg C$	$(B \lor \neg C)$	$(A \lor C) \land (B \lor \neg C)$	
	0	0	0	0	1	1	0	
	0	0	1	1	0	0	0	
	0	1	0	0	1	1	0	
	0	1	1	1	0	1	1	
	1	0	0	1	1	1	1	
	1	0	1	1	0	0	0	
	1	1	0	1	1	1	1	
	1	1	1	1	0	1	1	

Let $\mathcal{A} : \{A, B, C\} \rightarrow \{0, 1\}$ with $\mathcal{A}(A) = 0, \mathcal{A}(B) = 1, \mathcal{A}(C) = 1$.

$$\mathcal{A} \models (A \lor C), \quad \mathcal{A} \models (B \lor \neg C)$$
$$\mathcal{A} \models (A \lor C) \land (B \lor \neg C)$$
$$\mathcal{A} \models \{(A \lor C), (B \lor \neg C)\}$$

1.3 Models, Validity, and Satisfiability

Examples:

 $F \rightarrow F$ and $F \lor \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable

 $F \wedge \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

$F = (A \lor C) \land (B \lor \neg C)$

A	В	С	$(A \lor C)$	$\neg C$	$(B \lor \neg C)$	$(A \lor C) \land (B \lor \neg C)$
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	1	1

F is not valid:

 $\mathcal{A}_1(F) = 0 \text{ für } \mathcal{A}_1 : \{A, B, C\} \rightarrow \{0, 1\} \text{ mit } \mathcal{A}(A) = \mathcal{A}(B) = \mathcal{A}(C) = 0.$

F is satisfiable:

 $\mathcal{A}_2(F) = 1 \text{ für } \mathcal{A} : \{A, B, C\} \rightarrow \{0, 1\} \text{ mit } \mathcal{A}(A) = 0, \mathcal{A}(B) = 1, \mathcal{A}(C) = 1.$

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and G are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

$$F = (A \lor C) \land (B \lor \neg C) \qquad G = (A \lor B)$$

Check if $F \models G$

A	В	С	$(A \lor C)$	$(B \lor \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

$$F = (A \lor C) \land (B \lor \neg C) \qquad G = (A \lor B)$$

Check if $F \models G$

A	В	С	$(A \lor C)$	$(B \lor \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

$$F = (A \lor C) \land (B \lor \neg C) \qquad G = (A \lor B)$$

Check if $F \models G$ Yes, $F \models G$

A	В	С	$(A \lor C)$	$(B \lor \neg C)$	$(A \lor C) \land (B \lor \neg C)$	$(A \lor B)$
0	0	1	1	0	0	0
0	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	0	1	0	1
1	0	1	1	0	0	1
1	0	0	1	1	1	1
1	1	1	1	1	1	1
1	1	0	1	1	1	1

$F = (A \lor C) \land (B \lor \neg C) \qquad G = (A \lor B)$										
Chec	Check if $F \models G$ Yes, $F \models G$									
But it is not true that $G \models F$ (Notation: $G \not\models F$)										
A	$A \mid B \mid C \mid (A \lor C) \mid (B \lor \neg C) \mid (A \lor C) \land (B \lor \neg C) \mid (A \lor B)$									
0		0	1	1	0	0	0			
0		0	0	0	1	0	0			
0		1	1	1	1	1	1			
0		1	0	0	1	0	1			
1		0	1	1	0	0	1			
1		0	0	1	1	1	1			
1		1	1	1	1	1	1			
1		1	0	1	1	1	1			

F entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and G are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: *F* entails *G* iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$.