Decision Procedures for Verification

Part 1. Propositional Logic (2)

4.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Last time

1.1 Syntax

e Language
— propositional variables

— logical symbols
= Boolean combinations

e Propositional Formulae
1.2 Semantics
e \aluations
e Truth value of a formula in a valuation

e Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F; F holds under A):

AEF e AF) =1

F is valid (or is a tautology):
= F :< A = F for all M-valuations A

F is called satisfiable iff there exists an A such that A = F.

Otherwise F is called unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F = G,
if for all M-valuations A, whenever A = F then A = G.

F and G are called equivalent if for all IN-valuations A we have

A=EFe AEG.

Proposition 1.1:
F entails G iff (F — G) is valid

Proposition 1.2:
F and G are equivalent iff (F <+ G) is valid.

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”, e.g., N = F if
for all M-valuations A: if A= G for all G € N, then A = F.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as
explained by the following proposition.

Proposition 1.3:

F valid < —F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is
sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment N = F can be reduced to

unsatisfiability. How?

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as
explained by the following proposition.

Proposition 1.4:

N = F < N U —F unsatisfiable

Hence in order to design a theorem prover (validity/entailment
checker) it is sufficient to design a checker for unsatisfiability.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.
Obviously, A(F) depends only on the values of those finitely many

variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to
check 2" valuations to see whether F is satisfiable or not.
= truth table.

So the satisfiability problem is clearly decidable
(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth

tables to check the satisfiability of a formula. (later more)

Checking Unsatisfiability

The satisfiability problem is clearly decidable
(but, by Cook’s Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can
be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)

Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified
six classes of sets S of Boolean formulae for which SAT(S) is in
PTIME. He proved that all other types of sets of formulae yield an
NP-complete problem.

Substitution Theorem

Proposition 1.5:
Let F and G be equivalent formulas, let H be a formula in which F

occurs as a subformula.

Then H is equivalent to H” where H’ is obtained from H by replacing
the occurrence of the subformula F by G.

(Notation: H = H[F], H" = H|[G].)

Proof: By induction over the formula structure of H.

10

Structural Induction

Goal: Prove a property P of propositional formulae

Prove that for every formula F, P(F) holds.

Induction basis: Show that P(F) holds for all F e MU {T, L}

Let F be a formula (notin MU {T, L}).
Induction hypothesis: We assume that P(G) holds for all strict subformulae G of F.

Induction step: Using the induction hypothesis, we show that P(F) holds as well.
In order to prove that P(F) holds we usually need to consider various cases (reflecting
the way the formula F is built):

Case 1: F = G

Case 2: F = G1 A Go
Case 3: F = G1 V Gy
Case 4: F = G — G
Case 5: F = G; < G

Some Important Equivalences

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H:

(FAF)+ F
(FVF)+ F (Idempotency)
(FAG) <+ (GAF)
(FVG)<+~ (GVF) (Commutativity)
(FA(GAH)) < ((FAG)AH)
(FV(GVH)) < ((FVG)VH) (Associativity)

(FA(GV H)) < ((FAG)V(FAH))
(FV(GAH)) < ((FVG)AN(FVH)) (Distributivity)

12

Some Important Equivalences

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H:

(FA(FVG)) < F
(FV(FAG)) < F
(——F) < F
—(FAG) < (=F V—=G)
—(FV G) < (-F AN —=G)
(FAG)<« F,if G is a tautology
(FV G) <+ T,if G is a tautology
(FAG)<+ L, if G is unsatisfiable
(FV G) <> F, if G is unsatisfiable

(Absorption)
(Double Negation)

(De Morgan’s Laws)

(Tautology Laws)

(Tautology Laws)

13

1.4 Normal Forms

We define conjunctions of formulas as follows:
N Fi=T.
Aiy Fi = F1.
AL F = A\, Fi A Foya.
and analogously disjunctions:
\/?:1 Fi=1.
Vi, Fi = Fu.
VI F= Vi, FiV Fout.

14

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable —P.

A clause is a (possibly empty) disjunction of literals.

15

Literals and Clauses

A literal is either a propositional variable P or a negated propositional
variable —P.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

il the empty clause
P positive unit clause
- P negative unit clause
PV QVR positive clause
PV -QV-R clause

PVvVPV-QV-RVR allow repetitions/complementary literals

16

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form),
if it is a conjunction of disjunctions of literals (or in other words, a

conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction

of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

17

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of DNF

formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and —P.

Conversely, a formula in DNF is unsatisfiable, if and only if each of

its conjunctions contains a pair of complementary literals P and
- P.

On the other hand, checking the unsatisfiability of CNF formulas or

the validity of DNF formulas is known to be coNP-complete.

18

Conversion to CNF/DNF

Proposition 1.8:
For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:
We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of A and V):

Step 1: Eliminate equivalences:

(F+ G) =k (F—>G)N(G— F)

19

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F—> G) =K (—IF\/ G)

Step 3: Push negations downward:

-(FV G) =k (-FA—G)
—-(FANG) =k (—FV-G)

Step 4: Eliminate multiple negations:

——F =k F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F

20

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(FAG)VH =k (FVH)AN(GV H)

Step 6: Eliminate T and _L:

(FAT) =«
(FAL) =«
(FVT) =«
(FV 1) =«

-l =k

— 4 T+ - T

- =k

21

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1, 3 and

5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.

22

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.

23

Satisfiability-preserving Transformations

The goal
“find a formula G in CNF such that = F < G”

Is unpractical.

But if we relax the requirement to
“find a formula G in CNF such that F = L iff G = 1"

we can get an efficient transformation.

24

Satisfiability-preserving Transformations

Idea:
A formula F[F’] is satisfiable iff F[P] A (P < F’) is satisfiable
(where P new propositional variable that works as abbreviation for F”).

We can use this rule recursively for all subformulas in the original formula

(this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an
additional factor (each formula P <+ F’ gives rise to at most one application
of the distributivity law).

25

Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither — nor <. A subformula F’ of F has
positive polarity in F, if it occurs below an even number of negation
signs; it has negative polarity in F, if it occurs below an odd number

of negation signs.

26

Optimized Transformations

Proposition 1.9:
Let F[F’] be a formula containing neither — nor <»; let P be a
propositional variable not occurring in F[F’].

If F' has positive polarity in F, then F[F’] is satisfiable if and only if
F[P] A (P — F’) is satisfiable.

If F’ has negative polarity in F, then F[F’] is satisfiable if and only if
F[P] A (F" — P) is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called

structure-preserving transformation to clause form.

27

Optimized Transformations

Example: Let F = (Q1 A Q) V (R1 A R2).
The following are equivalent:
o FE=1L
o Pe AN (Pr < (Po,r@ V Priar,) N (Poirg, < (Q1 A Q2))
N (Priar, ¢ (R1NANR)) EL
e Pe N (Pr = (Poirqy V Prinry) N (Poing, — (@1 A Q2))
N (Priar, = (R1NAR)) EL
© Pe A (mPFV Po,n@, V Prinry) N (mPgiag, V Qi) A (—Pgrg, V Q2)
A (=Prar, V R1) A (mPr AR, V R2)) E

28

Decision Procedures for Satisfiability

e Simple Decision Procedures
truth table method

e [he Resolution Procedure

e The Davis-Putnam-Logemann-Loveland Algorithm

29

1.5 Inference Systems and Proofs

Inference systems ' (proof calculi) are sets of tuples
(F11°°°1FH1FI'H—1)1 nZO;

called inferences or inference rules, and written

premises

N\

Fi ... Fj

Fn—l—l
——

conclusion

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.

30

Proofs

A proof in I of a formula F from a a set of formulas N (called

assumptions) is a sequence Fi, ..., Fx of formulas where
(i) Fo=F,

(i) forall 1 < i < k: F; € N, or else there exists an inference
(Fiy, ..., Fi, Fi) in I, such that 0 < j; </, for 1 < j < n;.

31

Soundness and Completeness

Provability Fr of F from N in I:
N Hr F &< there exists a proof [of F from N.

[is called sound &

Fi ... F,
F

[is called complete &

N|=F = N F

[is called refutationally complete &

NEL = Nbirl

el = FA,....,F,=F

32

1.6 The Propositional Resolution Calculus

Resolution inference rule:

CVA -AvV D
cCvD

Terminology: C V D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

CVAVA
CVA

33

The Resolution Calculus Res

These are schematic inference rules: for each substitution of the
schematic variables C, D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “V" Is considered associative and commutative, we assume that

A and —A can occur anywhere in their respective clauses.

34

Sample Refutation

| —
i

o 0 N o ok w b=

~PV-PVQ
PV Q

~RV -Q

R
-PVQVQ
-PV Q
RV

Q

-R

1

(Res

(Res

(Res
(Res

(given)
(given)
(given)

(given)
.2, into 1.)

(Fact. 5.)
. 2. into 6.)
(Fact. 7.)
. 8. into 3.)
. 4. into 9.)

35

Resolution with Implicit Factorization RIF

CVAV...VA -AV D

CcvD
1. -PV-PVQ (given)
2. PVQ (given)
3. -RV-Q (given)
4. R (given)
5. - PVQRVEQ (Res.2. intol.)
6. RVQERVAQE (Res. 2. into 5.)
7. —R (Res. 6. into 3.)
8. 1 (Res. 4. into 7.)

Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.

Proof:
Let A valuation. To be shown:

(i) for resolution: A=CVA A DV-A = A=CVD
(ii) for factorization: A CVAVA = AE=CVA

(i): Assume A*(CVA)=1 A"(DV-A)=1.

Two cases need to be considered: (a) A*(A) =1, or (b) A" (—A) = 1.
() AEA=AED=AECVD
(b) A A= A=C=A=CVD

(ii): Assume A = CV AV A. Note that A*(CV AV A)=A"(CVA),

i.e. the conclusion is also true in A.

37

Soundness of Resolution

Note: In propositional logic we have:

1. AELiV...VL, & thereexistsi: A= L.

2. A=Aor AE-A

38

Completeness of Resolution

How to show refutational completeness of propositional resolution:

e We have to show: N1 = Ntge L,
or equivalently: If N ges L, then N has a model.

e |dea: Suppose that we have computed sufficiently many
inferences (and not derived 1).

Now order the clauses in N according to some appropriate
ordering, inspect the clauses in ascending order, and construct a

series of valuations.

e [he limit valuation can be shown to be a model of N.

39

