Decision Procedures for Verification

Part 1. Propositional Logic (2)

$$
4.11 .2014
$$

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Last time

1.1 Syntax

- Language
- propositional variables
- logical symbols
\Rightarrow Boolean combinations
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F)=1
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all } \Pi \text {-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise F is called unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π-valuations \mathcal{A}, whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.
F and G are called equivalent if for all Π-valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1:
F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Entailment and Equivalence

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π-valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

$$
F \text { valid } \Leftrightarrow \neg F \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Q : In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.4:

$$
N \models F \Leftrightarrow N \cup \neg F \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A}.

If F contains n distinct propositional variables, then it is sufficient to check 2^{n} valuations to see whether F is satisfiable or not.
\Rightarrow truth table.
So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

Checking Unsatisfiability

The satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)
Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified six classes of sets S of Boolean formulae for which $\operatorname{SAT}(S)$ is in PTIME. He proved that all other types of sets of formulae yield an NP-complete problem.

Substitution Theorem

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then H is equivalent to H^{\prime} where H^{\prime} is obtained from H by replacing the occurrence of the subformula F by G.
(Notation: $H=H[F], H^{\prime}=H[G]$.)

Proof: By induction over the formula structure of H.

Structural Induction

Goal: Prove a property P of propositional formulae
Prove that for every formula $F, P(F)$ holds.

Induction basis: Show that $P(F)$ holds for all $F \in \Pi \cup\{\top, \perp\}$
Let F be a formula (not in $\Pi \cup\{\top, \perp\}$).
Induction hypothesis: We assume that $P(G)$ holds for all strict subformulae G of F.
Induction step: Using the induction hypothesis, we show that $P(F)$ holds as well. In order to prove that $P(F)$ holds we usually need to consider various cases (reflecting the way the formula F is built):

Case 1: $F=\neg G$
Case 2: $F=G_{1} \wedge G_{2}$
Case 3: $F=G_{1} \vee G_{2}$
Case 4: $F=G_{1} \rightarrow G_{2}$
Case 5: $F=G_{1} \leftrightarrow G_{2}$

Some Important Equivalences

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H :

$$
\begin{array}{rlrl}
(F \wedge F) & \leftrightarrow & & \\
(F \vee F) & \leftrightarrow F & & \text { (Idempotency) } \\
(F \wedge G) & \leftrightarrow(G \wedge F) & & \\
(F \vee G) & \leftrightarrow(G \vee F) & & \\
(F \wedge(G \wedge H)) & \leftrightarrow((F \wedge G) \wedge H) & & \\
(F \vee(G \vee H)) & \leftrightarrow((F \vee G) \vee H) & \text { (Associativity) } \\
(F \wedge(G \vee H)) \leftrightarrow((F \wedge G) \vee(F \wedge H)) & & \\
(F \vee(G \wedge H)) & \leftrightarrow((F \vee G) \wedge(F \vee H)) & \text { (Distributivity) }
\end{array}
$$

Some Important Equivalences

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H :

$$
\begin{array}{rlrl}
& (F \wedge(F \vee G)) \leftrightarrow F & & \\
& (F \vee(F \wedge G)) \leftrightarrow F & & \text { (Absorption) } \\
& (\neg \neg F) \leftrightarrow F & & \text { (Double Negation) } \\
\neg(F \wedge G) \leftrightarrow(\neg F \vee \neg G) & & \\
\neg(F \vee G) \leftrightarrow(\neg F \wedge \neg G) & & \text { (De Morgan's Laws) }
\end{array}
$$

$(F \wedge G) \leftrightarrow F$, if G is a tautology
$(F \vee G) \leftrightarrow \top$, if G is a tautology
(Tautology Laws)
$(F \wedge G) \leftrightarrow \perp$, if G is unsatisfiable
$(F \vee G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)

1.4 Normal Forms

We define conjunctions of formulas as follows:

$$
\begin{aligned}
& \bigwedge_{i=1}^{0} F_{i}=\mathrm{T} \\
& \bigwedge_{i=1}^{1} F_{i}=F_{1} . \\
& \bigwedge_{i=1}^{n+1} F_{i}=\bigwedge_{i=1}^{n} F_{i} \wedge F_{n+1} .
\end{aligned}
$$

and analogously disjunctions:

$$
\begin{aligned}
& \bigvee_{i=1}^{0} F_{i}=\perp . \\
& \bigvee_{i=1}^{1} F_{i}=F_{1} . \\
& \bigvee_{i=1}^{n+1} F_{i}=\bigvee_{i=1}^{n} F_{i} \vee F_{n+1} .
\end{aligned}
$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:
$\begin{array}{lr}\perp & \text { the empty clause } \\ P & \text { positive unit clause } \\ \neg P & \text { negative unit clause } \\ P \vee Q \vee R & \text { positive clause } \\ P \vee \neg Q \vee \neg R & \text { clause }\end{array}$
$P \vee P \vee \neg Q \vee \neg R \vee R \quad$ allow repetitions/complementary literals

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:
are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:
We consider the case of CNF.
Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$
(F \leftrightarrow G) \Rightarrow_{k}(F \rightarrow G) \wedge(G \rightarrow F)
$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$
(F \rightarrow G) \Rightarrow_{K}(\neg F \vee G)
$$

Step 3: Push negations downward:

$$
\begin{aligned}
& \neg(F \vee G) \Rightarrow_{K} \quad(\neg F \wedge \neg G) \\
& \neg(F \wedge G) \Rightarrow_{K} \quad(\neg F \vee \neg G)
\end{aligned}
$$

Step 4: Eliminate multiple negations:

$$
\neg \neg F \Rightarrow{ }_{K} F
$$

The formula obtained from a formula F after applying steps $1-4$ is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$
(F \wedge G) \vee H \Rightarrow_{k}(F \vee H) \wedge(G \vee H)
$$

Step 6: Eliminate \top and \perp :

$$
\begin{aligned}
(F \wedge \top) & \Rightarrow_{k} F \\
(F \wedge \perp) & \Rightarrow_{k} \perp \\
(F \vee \top) & \Rightarrow_{k} \top \\
(F \vee \perp) & \Rightarrow_{k} F \\
\neg \perp & \Rightarrow_{k} \top \\
\neg \top & \Rightarrow_{k} \perp
\end{aligned}
$$

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only steps 1,3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
"find a formula G in CNF such that $\models F \leftrightarrow G$ "
is unpractical.

But if we relax the requirement to
"find a formula G in CNF such that $F \models \perp$ iff $G \models \perp "$
we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:
A formula $F\left[F^{\prime}\right]$ is satisfiable iff $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable (where P new propositional variable that works as abbreviation for F^{\prime}).

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F^{\prime}$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow. A subformula F^{\prime} of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.9:

Let $F\left[F^{\prime}\right]$ be a formula containing neither \rightarrow nor \leftrightarrow; let P be a propositional variable not occurring in $F\left[F^{\prime}\right]$.

If F^{\prime} has positive polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.

If F^{\prime} has negative polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Proof:
Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F=\left(Q_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right)$.
The following are equivalent:

- $F \models \perp$
- $P_{F} \wedge\left(P_{F} \leftrightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \leftrightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$

$$
\wedge\left(P_{R_{1} \wedge R_{2}} \leftrightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp
$$

- $P_{F} \wedge\left(P_{F} \rightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \rightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$

$$
\wedge\left(P_{R_{1} \wedge R_{2}} \rightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp
$$

- $P_{F} \wedge\left(\neg P_{F} \vee P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{1}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{2}\right)$
$\left.\wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{1}\right) \wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{2}\right)\right) \models$

Decision Procedures for Satisfiability

- Simple Decision Procedures truth table method
- The Resolution Procedure
- The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems 「 (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), \quad n \geq 0,
$$

called inferences or inference rules, and written
premises

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k: F_{i} \in N$, or else there exists an inference $\left(F_{i_{1}}, \ldots, F_{i_{n_{i}}}, F_{i}\right)$ in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ :
$N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \Rightarrow F_{1}, \ldots, F_{n} \models F
$$

Γ is called complete $: \Leftrightarrow$

$$
N \models F \quad \Rightarrow N \vdash_{\ulcorner } F
$$

Γ is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \Rightarrow N \vdash_{\ulcorner\perp} \perp
$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : resolved atom
(Positive) factorisation inference rule:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.	$\neg P \vee \neg P \vee Q r$	(given)
2.	$P \vee Q$	(given)
3.	$\neg R \vee \neg Q$	(given)
4.	R	(given)
5.	$\neg P \vee Q \vee Q$	(Res. 2. into 1.)
6.	$\neg P \vee Q$	(Fact. 5.)
7.	$Q \vee Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization RIF

		$C \vee A \vee \ldots \vee A \quad \neg A \vee D$
1.	$\neg P \vee \neg P \vee Q$	(given)
2.	$P \vee Q$	(given)
3.	$\neg R \vee \neg Q$	(given)
4.	R	(given)
5.	$\neg P \vee Q \vee Q$	(Res. 2. into 1.)
6.	$Q \vee Q \vee Q$	(Res. 2. into 5.)
7.	$\neg R$	(Res. 6. into 3.)
8.	\perp	(Res. 4. into 7.)

Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.
Proof:
Let \mathcal{A} valuation. To be shown:
(i) for resolution: $\mathcal{A} \models C \vee A, \mathcal{A} \models D \vee \neg A \Rightarrow \mathcal{A} \models C \vee D$
(ii) for factorization: $\mathcal{A} \models C \vee A \vee A \Rightarrow \mathcal{A} \models C \vee A$
(i): Assume $\mathcal{A}^{*}(C \vee A)=1, \mathcal{A}^{*}(D \vee \neg A)=1$.

Two cases need to be considered: (a) $\mathcal{A}^{*}(A)=1$, or (b) $\mathcal{A}^{*}(\neg A)=1$.
(a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \vee D$
(b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \vee D$
(ii): Assume $\mathcal{A} \models C \vee A \vee A$. Note that $\mathcal{A}^{*}(C \vee A \vee A)=\mathcal{A}^{*}(C \vee A)$,
i.e. the conclusion is also true in \mathcal{A}.

Soundness of Resolution

Note: In propositional logic we have:

1. $\mathcal{A} \models L_{1} \vee \ldots \vee L_{n} \Leftrightarrow$ there exists $i: \mathcal{A} \models L_{i}$.
2. $\mathcal{A} \models A$ or $\mathcal{A} \models \neg A$.

Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash_{\text {Res }} \perp$, or equivalently: If $N \nvdash$ Res \perp, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).
Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.
- The limit valuation can be shown to be a model of N.

