Decision Procedures for Verification

Part 1. Propositional Logic (2)

4.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Last time

1.1 Syntax

- Language
 - propositional variables
 - logical symbols
 - $\Rightarrow \mathsf{Boolean}\ \mathsf{combinations}$
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

```
\mathcal{A} \models \mathsf{F} : \Leftrightarrow \mathcal{A}(\mathsf{F}) = 1
```

F is valid (or is a tautology):

 $\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an A such that $A \models F$. Otherwise *F* is called unsatisfiable (or contradictory). *F* entails (implies) *G* (or *G* is a consequence of *F*), written $F \models G$, if for all Π -valuations \mathcal{A} , whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.

F and G are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1: *F* entails *G* iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$. Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

F valid $\Leftrightarrow \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.4:

 $N \models F \Leftrightarrow N \cup \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A} .

If *F* contains *n* distinct propositional variables, then it is sufficient to check 2^n valuations to see whether *F* is satisfiable or not. \Rightarrow truth table.

So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

The satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)

Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified six classes of sets S of Boolean formulae for which SAT(S) is in PTIME. He proved that all other types of sets of formulae yield an NP-complete problem.

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then H is equivalent to H' where H' is obtained from H by replacing the occurrence of the subformula F by G. (Notation: H = H[F], H' = H[G].)

Proof: By induction over the formula structure of H.

Goal: Prove a property P of propositional formulae

Prove that for every formula F, P(F) holds.

Induction basis: Show that P(F) holds for all $F \in \Pi \cup \{\top, \bot\}$

Let F be a formula (not in $\Pi \cup \{\top, \bot\}$).

Induction hypothesis: We assume that P(G) holds for all strict subformulae G of F.

Induction step: Using the induction hypothesis, we show that P(F) holds as well. In order to prove that P(F) holds we usually need to consider various cases (reflecting the way the formula F is built):

Case 1: $F = \neg G$ Case 2: $F = G_1 \land G_2$ Case 3: $F = G_1 \lor G_2$ Case 4: $F = G_1 \rightarrow G_2$ Case 5: $F = G_1 \leftrightarrow G_2$

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H:

 $(F \land F) \leftrightarrow F$ $(F \lor F) \leftrightarrow F$ $(F \land G) \leftrightarrow (G \land F)$ $(F \lor G) \leftrightarrow (G \lor F)$ $(F \land (G \land H)) \leftrightarrow ((F \land G) \land H)$ $(F \lor (G \lor H)) \leftrightarrow ((F \lor G) \lor H)$ $(F \land (G \lor H)) \leftrightarrow ((F \land G) \lor H)$ $(F \land (G \lor H)) \leftrightarrow ((F \land G) \lor (F \land H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$ $(F \lor (G \land H)) \leftrightarrow ((F \lor G) \land (F \lor H))$

Some Important Equivalences

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H:

 $(F \land (F \lor G)) \leftrightarrow F$ $(F \lor (F \land G)) \leftrightarrow F$ (Absorption) $(\neg\neg F) \leftrightarrow F$ (Double Negation) $\neg (F \land G) \leftrightarrow (\neg F \lor \neg G)$ $\neg (F \lor G) \leftrightarrow (\neg F \land \neg G)$ (De Morgan's Laws) $(F \land G) \leftrightarrow F$, if G is a tautology $(F \lor G) \leftrightarrow \top$, if G is a tautology (Tautology Laws) $(F \land G) \leftrightarrow \bot$, if G is unsatisfiable $(F \lor G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)

We define conjunctions of formulas as follows:

.

$$\begin{split} & \bigwedge_{i=1}^{0} F_{i} = \top. \\ & \bigwedge_{i=1}^{1} F_{i} = F_{1}. \\ & \bigwedge_{i=1}^{n+1} F_{i} = \bigwedge_{i=1}^{n} F_{i} \wedge F_{n+1} \end{split}$$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} F_{i} = \bot.$$
$$\bigvee_{i=1}^{1} F_{i} = F_{1}.$$
$$\bigvee_{i=1}^{n+1} F_{i} = \bigvee_{i=1}^{n} F_{i} \vee F_{n+1}.$$

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

\perp	the empty clause
P	positive unit clause
$\neg P$	negative unit clause
$P \lor Q \lor R$	positive clause
$P \lor \neg Q \lor \neg R$	clause
$P \lor P \lor \neg Q \lor \neg R \lor R$	allow repetitions/complementary literals

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \; \Rightarrow_{\mathcal{K}} \; (F \rightarrow G) \land (G \rightarrow F)$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$(F \rightarrow G) \Rightarrow_{\kappa} (\neg F \lor G)$$

Step 3: Push negations downward:

$$eg (F \lor G) \Rightarrow_{\mathcal{K}} (\neg F \land \neg G)$$

 $eg (F \land G) \Rightarrow_{\mathcal{K}} (\neg F \lor \neg G)$

Step 4: Eliminate multiple negations:

$$\neg \neg F \Rightarrow_{K} F$$

The formula obtained from a formula F after applying steps 1-4 is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_{\mathcal{K}} (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \bot :

 $(F \land \top) \Rightarrow_{K} F$ $(F \land \bot) \Rightarrow_{K} \bot$ $(F \lor \top) \Rightarrow_{K} \top$ $(F \lor \bot) \Rightarrow_{K} F$ $\neg \bot \Rightarrow_{K} T$ $\neg \top \Rightarrow_{K} \bot$

Proving termination is easy for most of the steps; only steps 1, 3 and 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

```
"if ind a formula G in CNF such that \models F \leftrightarrow G"
is unpractical.
```

```
But if we relax the requirement to
```

"find a formula G in CNF such that $F \models \bot$ iff $G \models \bot$ "

we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:

A formula F[F'] is satisfiable iff $F[P] \land (P \leftrightarrow F')$ is satisfiable (where P new propositional variable that works as abbreviation for F').

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F'$ gives rise to at most one application of the distributivity law).

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow . A subformula F' of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Proposition 1.9:

Let F[F'] be a formula containing neither \rightarrow nor \leftrightarrow ; let P be a propositional variable not occurring in F[F'].

If F' has positive polarity in F, then F[F'] is satisfiable if and only if $F[P] \land (P \rightarrow F')$ is satisfiable.

If F' has negative polarity in F, then F[F'] is satisfiable if and only if $F[P] \wedge (F' \rightarrow P)$ is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F = (Q_1 \land Q_2) \lor (R_1 \land R_2)$.

The following are equivalent:

• $F \models \perp$

•
$$P_F \land (P_F \leftrightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \leftrightarrow (Q_1 \land Q_2))$$

 $\land (P_{R_1 \land R_2} \leftrightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (P_F \rightarrow (P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (P_{Q_1 \land Q_2} \rightarrow (Q_1 \land Q_2))$
 $\land (P_{R_1 \land R_2} \rightarrow (R_1 \land R_2)) \models \bot$
• $P_F \land (\neg P_F \lor P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \land (\neg P_{Q_1 \land Q_2} \lor Q_1) \land (\neg P_{Q_1 \land Q_2} \lor Q_2)$
 $\land (\neg P_{R_1 \land R_2} \lor R_1) \land (\neg P_{R_1 \land R_2} \lor R_2)) \models$

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

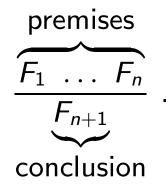
- The Resolution Procedure
- The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

```
(F_1, \ldots, F_n, F_{n+1}), n \ge 0,
```

called inferences or inference rules, and written



Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

(i)
$$F_k = F$$
,

(ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 Γ is called sound : \Leftrightarrow

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \ldots, F_n \models F$$

 $\Gamma \text{ is called complete } :\Leftrightarrow$

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete $:\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

1.	$ eg P \lor eg P \lor Q$	(given)
2.	$P \lor Q$	(given)
3.	$ eg R \lor eg Q$	(given)
4.	R	(given)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into 1.)
6.	$ eg P \lor Q$	(Fact. 5.)
7.	$Q \lor Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

	C	$\lor A \lor \ldots \lor A$	$\neg A \lor D$
		$C \lor D$	
1.	$\neg P \lor \neg P \lor G$) (give	en)
2.	$P \lor Q$	(give	en)
3.	$ eg R \lor eg Q$	(give	en)
4.	R	(give	en)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into	1.)
6.	$Q \lor Q \lor Q$	(Res. 2. into	5.)
7.	$\neg R$	(Res. 6. into	3.)
8.	\perp	(Res. 4. into	7.)

Theorem 1.10. Propositional resolution is sound.

Proof:

Let ${\mathcal A}$ valuation. To be shown:

- (i) for resolution: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A}$, $\mathcal{A} \models \mathcal{D} \lor \neg \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{D}$
- (ii) for factorization: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A} \lor \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{A}$

(i): Assume $\mathcal{A}^*(C \lor A) = 1$, $\mathcal{A}^*(D \lor \neg A) = 1$. Two cases need to be considered: (a) $\mathcal{A}^*(A) = 1$, or (b) $\mathcal{A}^*(\neg A) = 1$. (a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \lor D$ (b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \lor D$

(ii): Assume $\mathcal{A} \models C \lor A \lor A$. Note that $\mathcal{A}^*(C \lor A \lor A) = \mathcal{A}^*(C \lor A)$, i.e. the conclusion is also true in \mathcal{A} .

Soundness of Resolution

Note: In propositional logic we have:

1.
$$\mathcal{A} \models L_1 \lor \ldots \lor L_n \Leftrightarrow$$
 there exists *i*: $\mathcal{A} \models L_i$.

2.
$$\mathcal{A} \models \mathcal{A}$$
 or $\mathcal{A} \models \neg \mathcal{A}$.

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

• The limit valuation can be shown to be a model of N.