Decision Procedures for Verification

Part 1. Propositional Logic (3)

11.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Last time

1.1 Syntax

- Language
 - propositional variables
 - logical symbols \Rightarrow Boolean combinations
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability
- Entailment and Equivalence

Canonical forms

- \bullet CNF and DNF
- Computing CNF/DNF by rewriting the formulae
- Structure-Preserving Translation for CNF
- Optimized translation using polarity

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

Logik f. Informatiker Discrete Algebraic Structures

• The Resolution Procedure

started last time to be continued today

• The Davis-Putnam-Logemann-Loveland Algorithm today

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses. Theorem 1.10. Propositional resolution is sound.

Proof:

Let ${\mathcal A}$ valuation. To be shown:

- (i) for resolution: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A}$, $\mathcal{A} \models \mathcal{D} \lor \neg \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{D}$
- (ii) for factorization: $\mathcal{A} \models \mathcal{C} \lor \mathcal{A} \lor \mathcal{A} \Rightarrow \mathcal{A} \models \mathcal{C} \lor \mathcal{A}$

(i): Assume $\mathcal{A}^*(C \lor A) = 1$, $\mathcal{A}^*(D \lor \neg A) = 1$. Two cases need to be considered: (a) $\mathcal{A}^*(A) = 1$, or (b) $\mathcal{A}^*(\neg A) = 1$. (a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \lor D$ (b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \lor D$

(ii): Assume $\mathcal{A} \models C \lor A \lor A$. Note that $\mathcal{A}^*(C \lor A \lor A) = \mathcal{A}^*(C \lor A)$, i.e. the conclusion is also true in \mathcal{A} .

Soundness of Resolution

Note: In propositional logic we have:

1.
$$\mathcal{A} \models L_1 \lor \ldots \lor L_n \Leftrightarrow$$
 there exists *i*: $\mathcal{A} \models L_i$.

2.
$$\mathcal{A} \models \mathcal{A}$$
 or $\mathcal{A} \models \neg \mathcal{A}$.

How to show refutational completeness of propositional resolution:

- We have to show: N ⊨ ⊥ ⇒ N ⊢_{Res} ⊥, or equivalently: If N ⊭_{Res} ⊥, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

• The limit valuation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on propositional variables that is *total* and well-founded.
- 2. Extend \succ to an ordering \succ_L on literals:

$$[\neg]P \succ_L [\neg]Q$$
, if $P \succ Q$
 $\neg P \succ_L P$

3. Extend \succ_L to an ordering \succ_C on clauses: $\succ_C = (\succ_L)_{mul}$, the multi-set extension of \succ_L . *Notation:* \succ also for \succ_L and \succ_C . Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$\begin{array}{l} S_1 \succ_{\mathsf{mul}} S_2 :\Leftrightarrow S_1 \neq S_2 \\ \text{and } \forall m \in M : [S_2(m) > S_1(m) \\ \Rightarrow \quad \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))] \end{array}$$

Theorem 1.11:

a) ≻_{mul} is a partial ordering.
b) ≻ well-founded ⇒ ≻_{mul} well-founded
c) ≻ total ⇒ ≻_{mul} total
Proof:

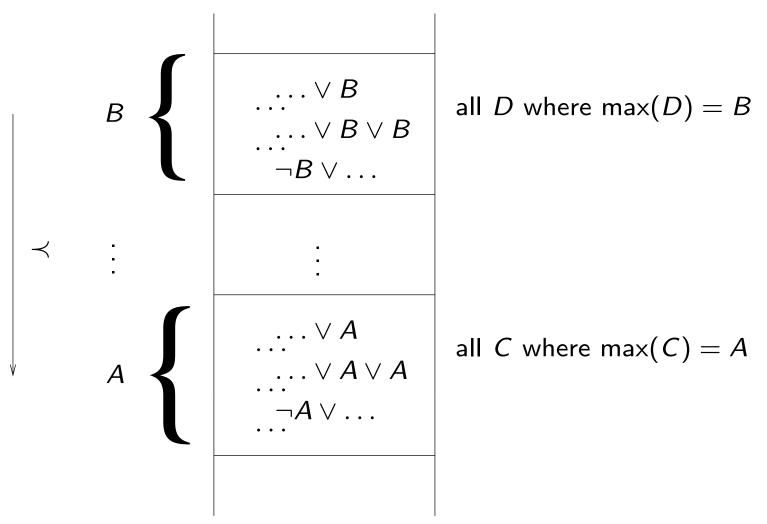
see Baader and Nipkow, page 22-24.

Suppose $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$. Then:

 $P_{0} \lor P_{1}$ $\prec P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{4} \lor P_{3}$ $\prec \neg P_{1} \lor \neg P_{4} \lor P_{3}$ $\prec \neg P_{5} \lor P_{5}$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:



Closure of Clause Sets under *Res*

$$Res(N) = \{C \mid C \text{ is concl. of a rule in } Res w/ \text{ premises in } N\}$$

 $Res^{0}(N) = N$
 $Res^{n+1}(N) = Res(Res^{n}(N)) \cup Res^{n}(N), \text{ for } n \ge 0$
 $Res^{*}(N) = \bigcup_{n \ge 0} Res^{n}(N)$

N is called saturated (wrt. resolution), if $Res(N) \subseteq N$.

Proposition 1.12

- (i) $Res^*(N)$ is saturated.
- (ii) *Res* is refutationally complete, iff for each set *N* of ground clauses:

$$N \models \bot \Leftrightarrow \bot \in \operatorname{Res}^*(N)$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ . Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in A;
- $\mathcal{A} \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ , starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by ≺. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.

In what follows, instead of referring to partial valuations \mathcal{A}_{C} we will refer to partial interpretations I_{C} (the set of atoms which are true in the valuation \mathcal{A}_{C}).

- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If C is false, one would like to change I_C such that C becomes true.

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

Construction of *I*:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 ee P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	${P_2}$	
5	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_3\}$	
6	$\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
8	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
9	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$			
2	$P_0 ee P_1$			
3	$P_1 ee P_2$			
4	$ eg P_1 ee P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 ee P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_{\mathcal{C}}=\mathcal{A}_{\mathcal{C}}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 ee P_1$			
3	$P_1 ee P_2$			
4	$ eg P_1 ee P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	P_3 not maximal;
				min. counter-ex.
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	
$I = \{P_1, P_2, P_4, P_5\} = \mathcal{A}^{-1}(1)$: \mathcal{A} is not a model of the clause set				

 \Rightarrow there exists a counterexample.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If C is false, one would like to change I_C such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C .
- Hence, one chooses Δ_C = {A} if, and only if, C is false in I_C, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$\frac{\neg P_1 \lor P_4 \lor P_3 \lor P_0 \quad \neg P_1 \lor \neg P_4 \lor P_3}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	
3	$P_1 ee P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	${P_2}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	Ø	P_3 occurs twice
				minimal counter-ex.
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_4\}$	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	old counterexample
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	

The same *I*, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

 $\frac{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0}$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 ee P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	
9	$ eg P_1 \lor eg P_1 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_3\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \emptyset, & \text{otherwise} \end{cases} \end{split}$$

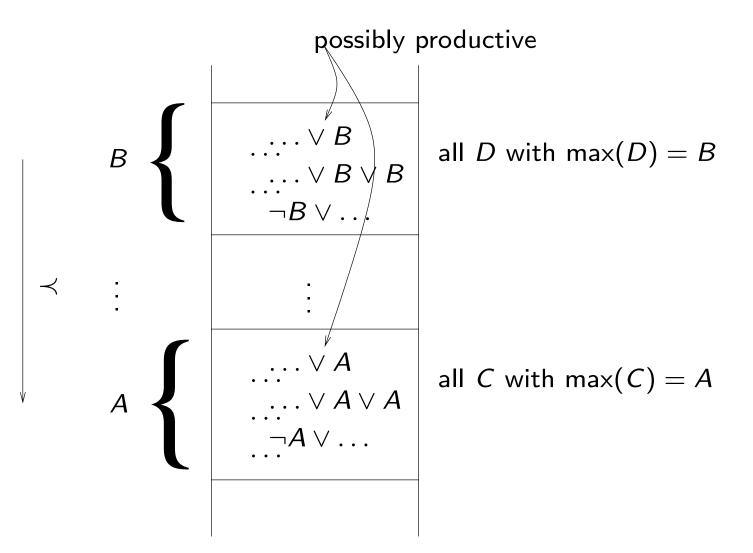
We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.



Some Properties of the Construction

Proposition 1.13:

(i)
$$C = \neg A \lor C' \Rightarrow \text{no } D \succeq C \text{ produces } A.$$

(ii) C productive
$$\Rightarrow I_C \cup \Delta_C \models C$$
.

(iii) Let $D' \succ D \succeq C$. Then

$$I_D \cup \Delta_D \models C \Rightarrow I_{D'} \cup \Delta_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $max(D) \succ max(C)$:

 $I_D \cup \Delta_D \not\models C \Rightarrow I_{D'} \cup \Delta_{D'} \not\models C \text{ and } I_N \not\models C.$

Some Properties of the Construction

(iv) Let $D' \succ D \succ C$. Then

$$I_D \models C \Rightarrow I_{D'} \models C$$
 and $I_N \models C$.

If, in addition, $C \in N$ or $max(D) \succ max(C)$:

$$I_D \not\models C \Rightarrow I_{D'} \not\models C \text{ and } I_N \not\models C.$$

(v) $D = C \lor A$ produces $A \Rightarrow I_N \not\models C$.

Theorem 1.14 (Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. *Res*, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15:

Let *N* be saturated wrt. *Res*. Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof:

Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively) $\Rightarrow I_N \models A \text{ and } I_N \not\models C'$ $\Rightarrow \text{ some } D = D' \lor A \in N \text{ produces A. As } \frac{D' \lor A}{D' \lor C'}, \text{ we infer}$ that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ $\Rightarrow \text{ contradicts minimality of } C.$

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Ordered Resolution with Selection

Ideas for improvement:

- In the completeness proof (Model Existence Theorem) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ order restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed
 - \Rightarrow choose a negative literal don't-care-nondeterministically
 - \Rightarrow selection

A selection function is a mapping

 $S: C \mapsto$ set of occurrences of *negative* literals in C

Example of selection with selected literals indicated as X:

$$\neg A \lor \neg A \lor B$$

$$\Box B_0 \lor \Box B_1 \lor A$$

In the completeness proof, we talk about (strictly) maximal literals of clauses.

Resolution Calculus Res_S^{\succ}

Ordered Resolution with Selection:

$$\frac{C \lor A \qquad D \lor \neg A}{C \lor D}$$

if (i) $A \succ C$;

- (ii) nothing is selected in C by S;
- (iii) $\neg A$ is selected in $D \lor \neg A$,

or else nothing is selected in $D \vee \neg A$ and $\neg A \succeq \max(D)$.

Ordered Factoring:

 $\frac{C \lor A \lor A}{(C \lor A)}$

if A is maximal in C and nothing is selected in C.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max(C)$.

Search Spaces Become Smaller

1	$A \lor B$	
2	$A \lor \neg B$	
3	$\neg A \lor B$	
4	$\neg A \lor \neg B$	
5	$B \lor B$	Res 1, 3
6	В	Fact 5
7	$\neg A$	Res 6, 4
8	A	Res 6, 2
9	\perp	Res 8, 7

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

$\operatorname{Res}_{S}^{\succ}$: Construction of Candidate Models

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \text{and nothing is selected in } C \\ \emptyset, & \text{otherwise} \end{cases}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Theorem 1.14^s (Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. Res_S^{\succ} , and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15^{*s*}:

Let *N* be saturated wrt. Res_S^{\succ} . Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof:

Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively or $\neg A$ is selected in C) $\Rightarrow I_N \models A$ and $I_N \not\models C'$ \Rightarrow some $D = D' \lor A \in N$ produces A. As $\frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ \Rightarrow contradicts minimality of C.

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

Logik f. Informatiker Discrete Algebraic Structures

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm now

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check whether it is satisfiable (and optionally: output *one* solution, if it is satisfiable).

 $\mathcal{A} \models N$ if and only if $\mathcal{A} \models C$ for all clauses C in N.

 $\mathcal{A} \models C$ if and only if $\mathcal{A} \models L$ for some literal $L \in C$.

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A} : \Pi \rightarrow \{0, 1\}$).

We start with an empty valuation and try to extend it step by step to all variables occurring in N.

If \mathcal{A} is a partial valuation, then literals and clauses can be true, false, or undefined under \mathcal{A} .

A clause is true under \mathcal{A} if one of its literals is true; it is false (or "conflicting") if all its literals are false; otherwise it is undefined (or "unresolved").

Unit Clauses

Observation:

Let \mathcal{A} be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under \mathcal{A} , then the following properties are equivalent:

- there is a valuation that is a model of N and extends A.
- there is a valuation that is a model of N and extends A and makes the remaining literal L of C true.
- C is called a unit clause; L is called a unit literal.

One more observation:

Let \mathcal{A} be a partial valuation and P a variable that is undefined under \mathcal{A} . If P occurs only positively (or only negatively) in the unresolved clauses in N, then the following properties are equivalent:

- there is a valuation that is a model of N and extends A.
- there is a valuation that is a model of N and extends A and assigns true (false) to P.
- P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation \mathcal{A}) { if (all clauses in N are true under \mathcal{A}) return true; elsif (some clause in N is false under \mathcal{A}) return false; elsif (N contains unit clause P) return DPLL(N, $\mathcal{A} \cup \{P \mapsto 1\}$); elsif (N contains unit clause $\neg P$) return DPLL(N, $\mathcal{A} \cup \{P \mapsto 0\}$); elsif (N contains pure literal P) return DPLL(N, $\mathcal{A} \cup \{P \mapsto 0\}$); elsif (N contains pure literal $\neg P$) return DPLL(N, $\mathcal{A} \cup \{P \mapsto 0\}$); elsif (N contains pure literal $\neg P$) return DPLL(N, $\mathcal{A} \cup \{P \mapsto 0\}$); else {

let P be some undefined variable in N; if (DPLL($N, A \cup \{P \mapsto 0\}$)) return true; else return DPLL($N, A \cup \{P \mapsto 1\}$);

}

}

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty partial valuation \mathcal{A} .

The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:

- The pure literal check is often omitted (it is too expensive).
- The branching variable is not chosen randomly.

The algorithm is implemented iteratively; the backtrack stack is managed explicitly (it may be possible and useful to backtrack more than one level).

DPLL Iteratively

}

```
An iterative (and generalized) version:
status = preprocess();
if (status != UNKNOWN) return status;
while(1) {
    decide_next_branch();
    while(1) {
        status = deduce();
        if (status == CONFLICT) {
            blevel = analyze_conflict();
            if (blevel == 0) return UNSATISFIABLE;
            else backtrack(blevel); }
        else if (status == SATISFIABLE) return SATISFIABLE;
        else break;
    }
```

preprocess()

preprocess the input (as far as it is possible without branching); return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()

choose the right undefined variable to branch; decide whether to set it to 0 or 1; increase the backtrack level. deduce()

make further assignments to variables (e.g., using the unit clause rule) until a satisfying assignment is found, or until a conflict is found, or until branching becomes necessary; return CONFLICT or SATISFIABLE or UNKNOWN.

DPLL Iteratively

```
analyze_conflict()
```

```
check where to backtrack.
```

```
backtrack(blevel)
```

```
backtrack to blevel;
```

```
flip the branching variable on that level;
```

```
undo the variable assignments in between.
```

Choosing the right undefined variable to branch is important for efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed too frequently.

In general: choose variables that occur frequently.

For applying the unit rule, we need to know the number of literals in a clause that are not false.

Maintaining this number is expensive, however.

Better approach: "Two watched literals":

- In each clause, select two (currently undefined) "watched" literals.
- For each variable P, keep a list of all clauses in which P is watched and a list of all clauses in which $\neg P$ is watched.
- If an undefined variable is set to 0 (or to 1), check all clauses in which P (or $\neg P$) is watched and watch another literal (that is true or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.

Goal: Reuse information that is obtained in one branch in further branches.

Method: Learning:

If a conflicting clause is found, use the resolution rule to derive a new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses; therefore it may become necessary to delete some of them afterwards to save space.

Backjumping

Related technique: non-chronological backtracking ("backjumping"):

If a conflict is independent of some earlier branch, try to skip that over that backtrack level. Runtimes of DPLL-style procedures depend extremely on the choice of branching variables.

If no solution is found within a certain time limit, it can be useful to restart from scratch with another choice of branchings (but learned clauses may be kept). State: M||F,

where:

- M partial assignment (sequence of literals),

some literals are annotated (L^d : decision literal)

- F clause set.

UnitPropagation $M || F, C \lor L \Rightarrow M, L || F, C \lor L$ if $M \models \neg C$, and L undef. in M Decide $M||F \Rightarrow M, L^d||F$ Fail $M||F, C \Rightarrow Fail$ Backjump $M, L^d, N||F \Rightarrow M, L'||F$

if L or $\neg L$ occurs in F, L undef. in M

if $M \models \neg C$, M contains no decision literals

 $\begin{array}{l}
\text{if} \begin{cases}
\text{there is some clause } C \lor L' \text{ s.t.:} \\
F \models C \lor L', M \models \neg C, \\
L' \text{ undefined in } M \\
L' \text{ or } \neg L' \text{ occurs in } F.
\end{array}$

Example

Assignment:	Clause set:	
Ø	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
P_1	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
P_1P_2	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1P_2P_3$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1P_2P_3P_4$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1P_2P_3P_4P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1P_2P_3P_4P_5\neg P_6$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Backtrack)
$P_1P_2P_3P_4\neg P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn

 $M||F \Rightarrow M||F, C$ if all atoms of C occur in F and $F \models C$

Forget

 $M||F, C \Rightarrow M||F$ if $F \models C$

In these two rules, the clause C is said to be learned and forgotten, respectively.

The ideas described so far heve been implemented in the SAT checker Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,

Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.