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Last time

1.1 Syntax

• Language

– propositional variables

– logical symbols

⇒ Boolean combinations

• Propositional Formulae

1.2 Semantics

• Valuations

• Truth value of a formula in a valuation

• Models, Validity, and Satisfiability

• Entailment and Equivalence
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Canonical forms

• CNF and DNF

• Computing CNF/DNF by rewriting the formulae

• Structure-Preserving Translation for CNF

• Optimized translation using polarity
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Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method Logik f. Informatiker

Discrete Algebraic Structures

• The Resolution Procedure started last time

to be continued today

• The Davis-Putnam-Logemann-Loveland Algorithm today
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1.6 The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.
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Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.

Proof:

Let A valuation. To be shown:

(i) for resolution: A |= C ∨ A, A |= D ∨ ¬A ⇒ A |= C ∨ D

(ii) for factorization: A |= C ∨ A ∨ A ⇒ A |= C ∨ A

(i): Assume A∗(C ∨ A) = 1,A∗(D ∨ ¬A) = 1.

Two cases need to be considered: (a) A∗(A) = 1, or (b) A∗(¬A) = 1.

(a) A |= A ⇒ A |= D ⇒ A |= C ∨ D

(b) A |= ¬A ⇒ A |= C ⇒ A |= C ∨ D

(ii): Assume A |= C ∨A∨A. Note that A∗(C ∨A∨A) = A∗(C ∨A),

i.e. the conclusion is also true in A.
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Soundness of Resolution

Note: In propositional logic we have:

1. A |= L1 ∨ . . . ∨ Ln ⇔ there exists i : A |= Li .

2. A |= A or A |= ¬A.
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Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of valuations.

• The limit valuation can be shown to be a model of N.
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Clause Orderings

1. We assume that ≻ is any fixed ordering on propositional

variables that is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .
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Multi-Set Orderings

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to

multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ ≻ m and S1(m
′) > S2(m

′))]

Theorem 1.11:

a) ≻mul is a partial ordering.

b) ≻ well-founded ⇒ ≻mul well-founded

c) ≻ total ⇒ ≻mul total

Proof:

see Baader and Nipkow, page 22–24.
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Example

Suppose P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0. Then:

P0 ∨ P1

≺ P1 ∨ P2

≺ ¬P1 ∨ P2

≺ ¬P1 ∨ P4 ∨ P3

≺ ¬P1 ∨ ¬P4 ∨ P3

≺ ¬P5 ∨ P5
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Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

{

{
..
.

.

..
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A
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Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Proposition 1.12

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res
∗(N)
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Construction of Interpretations

Given: set N of clauses, atom ordering ≻.

Wanted: Valuation A such that

• “many” clauses from N are valid in A;

• A |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺. We construct a

model for N incrementally.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

In what follows, instead of referring to partial valuations

AC we will refer to partial interpretations IC (the set of

atoms which are true in the valuation AC ).

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.

16



Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

Construction of I :

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2}

5 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

6 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

7 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

8 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

9 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C

(1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ P3 not maximal;

min. counter-ex.

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

I = {P1,P2,P4,P5} = A−1(1): A is not a model of the clause set

⇒ there exists a counterexample.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if

A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).
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Resolution Reduces Counterexamples

¬P1 ∨ P4 ∨ P3 ∨ P0 ¬P1 ∨ ¬P4 ∨ P3

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2} ∅ P3 occurs twice

minimal counter-ex.

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4}

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ old counterexample

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

The same I , but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

¬P1 ∨ ¬P1 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Construction of Candidate Models Formally

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
⋃

C≻D
∆D

∆C :=







{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻
N

:=
⋃

C
∆C .

We also simply write IN , or I , for I
≻
N

if ≻ is either irrelevant or known

from the context.
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Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
..

..

.
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D with max(D) = B

all C with max(C) = A
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Some Properties of the Construction

Proposition 1.13:

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C .

(iii) Let D′ ≻ D � C . Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C .
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Some Properties of the Construction

(iv) Let D′ ≻ D ≻ C . Then

ID |= C ⇒ ID′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C .

(v) D = C ∨ A produces A ⇒ IN 6|= C .
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Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose

that ⊥ 6∈ N. Then I≻
N

|= N.

Corollary 1.15:

Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.
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Model Existence Theorem

Proof:

Suppose ⊥ 6∈ N, but I≻
N

6|= N. Let C ∈ N minimal (in ≻) such that

I≻
N

6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′ (i.e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D
′∨A ¬A∨C

′

D′∨C′ , we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C
′∨A∨A

C′∨A
yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .
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Ordered Resolution with Selection

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem) one only

needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection
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Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of

clauses.
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Resolution Calculus Res
≻
S

Ordered Resolution with Selection:

C ∨ A D ∨ ¬A

C ∨ D

if (i) A ≻ C ;

(ii) nothing is selected in C by S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Ordered Factoring:

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

Note: For positive literals, A ≻ C is the same as A ≻ max(C).
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Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A ≻ B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds

strictly deterministically in this example. Generally, proof search will

still be non-deterministic but the search space will be much smaller

than with unrestricted resolution.
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Res
≻
S
: Construction of Candidate Models

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C over

the given signature inductively over ≻:

IC :=
⋃

C≻D
∆D

∆C :=



















{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

and nothing is selected in C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I
≻
N

:=
⋃

C
∆C .

We also simply write IN , or I , for I
≻
N

if ≻ is either irrelevant or known from

the context.
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Model Existence Theorem

Theorem 1.14s (Bachmair & Ganzinger):

Let ≻ be a clause ordering, let N be saturated wrt. Res≻
S
, and

suppose that ⊥ 6∈ N. Then I≻
N

|= N.

Corollary 1.15s :

Let N be saturated wrt. Res≻
S
. Then N |= ⊥ ⇔ ⊥ ∈ N.

41



Model Existence Theorem

Proof:

Suppose ⊥ 6∈ N, but I≻
N

6|= N. Let C ∈ N minimal (in ≻) such that

I≻
N

6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′

(i.e., the maximal atom occurs negatively or ¬A is selected in C)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D
′∨A ¬A∨C

′

D′∨C′ , we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C
′∨A∨A

C′∨A
yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .
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Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method Logik f. Informatiker

Discrete Algebraic Structures

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm now
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1.7 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).
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Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N.

A |= C if and only if A |= L for some literal L ∈ C .
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Partial Valuations

Since we will construct satisfying valuations incrementally,

we consider partial valuations

(that is, partial mappings A : Π → {0, 1}).

We start with an empty valuation and try to extend it

step by step to all variables occurring in N.

If A is a partial valuation, then literals and clauses can be

true, false, or undefined under A.

A clause is true under A if one of its literals is true;

it is false (or “conflicting”) if all its literals are false;

otherwise it is undefined (or “unresolved”).
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Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C ,

such that all literals but one in C are false under A, then the

following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.
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Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in

the unresolved clauses in N, then the following properties are

equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and

assigns true (false) to P .

P is called a pure literal.
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The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation A) {

if (all clauses in N are true under A) return true;

elsif (some clause in N is false under A) return false;

elsif (N contains unit clause P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains unit clause ¬P) return DPLL(N, A ∪ {P 7→ 0});

elsif (N contains pure literal P) return DPLL(N, A ∪ {P 7→ 1});

elsif (N contains pure literal ¬P) return DPLL(N, A ∪ {P 7→ 0});

else {

let P be some undefined variable in N;

if (DPLL(N, A ∪ {P 7→ 0})) return true;

else return DPLL(N, A ∪ {P 7→ 1});

}

}
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The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty

partial valuation A.
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The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;

the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one

level).
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DPLL Iteratively

An iterative (and generalized) version:

status = preprocess();

if (status != UNKNOWN) return status;

while(1) {

decide_next_branch();

while(1) {

status = deduce();

if (status == CONFLICT) {

blevel = analyze_conflict();

if (blevel == 0) return UNSATISFIABLE;

else backtrack(blevel); }

else if (status == SATISFIABLE) return SATISFIABLE;

else break;

}

}
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DPLL Iteratively

preprocess()

preprocess the input (as far as it is possible without branching);

return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()

choose the right undefined variable to branch;

decide whether to set it to 0 or 1;

increase the backtrack level.
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DPLL Iteratively

deduce()

make further assignments to variables (e.g., using the unit

clause rule) until a satisfying assignment is found, or until a

conflict is found, or until branching becomes necessary;

return CONFLICT or SATISFIABLE or UNKNOWN.
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DPLL Iteratively

analyze_conflict()

check where to backtrack.

backtrack(blevel)

backtrack to blevel;

flip the branching variable on that level;

undo the variable assignments in between.
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Branching Heuristics

Choosing the right undefined variable to branch is important for

efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently.
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The Deduction Algorithm

For applying the unit rule, we need to know the number of

literals in a clause that are not false.

Maintaining this number is expensive, however.
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The Deduction Algorithm

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P , keep a list of all clauses in which P is

watched and a list of all clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses

in which P (or ¬P) is watched and watch another literal (that

is true or undefined) in this clause if possible.

Watched literal information need not be restored upon

backtracking.
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Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further

branches.

Method: Learning:

If a conflicting clause is found, use the resolution rule to

derive a new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;

therefore it may become necessary to delete some of them

afterwards to save space.
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Backjumping

Related technique:

non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip

that over that backtrack level.
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Restart

Runtimes of DPLL-style procedures depend extremely on the

choice of branching variables.

If no solution is found within a certain time limit, it can be

useful to restart from scratch with another choice of branchings

(but learned clauses may be kept).
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A succinct formulation

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.
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A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′||F if



























there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .
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Example

Assignment: Clause set:

∅ ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1P2P3 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2P3P4 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

P1P2P3P4P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

P1P2P3P4P5¬P6 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Backtrack)

P1P2P3P4¬P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ...
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DPLL with learning

The DPLL system with learning consists of the four transition rules of the

Basic DPLL system, plus the following two additional rules:

Learn

M||F ⇒ M||F ,C if all atoms of C occur in F and F |= C

Forget

M||F ,C ⇒ M||F if F |= C

In these two rules, the clause C is said to be learned and forgotten,

respectively.

65



Further Information

The ideas described so far heve been implemented in the SAT

checker Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,

Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.
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