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Last time

Propositional Logic

Syntax

Semantics

Canonical forms

• Computing CNF/DNF by rewriting the formulae

• Structure-Preserving Translation for CNF

• Optimized translation using polarity

Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm
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Today

• The Davis-Putnam-Logemann-Loveland Algorithm

• Applications of propositional logic

• First-order logic.
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Applications of propositional logic

• A toy example (sudoku)

• Scheduling

• Verification
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Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea: pd
i ,j = true iff the value of square i , j is d

For example: p8
3,5 = true
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Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Coding SUDOKU by propositional clauses:

• Concrete values result in units: pd
i ,j .

• For every value, column we generate: ¬pd
i ,j ∨ ¬pd

i ,k (if j 6= k).

Accordingly for all rows and 3 × 3 boxes.

• For every square we generate: p1
i ,j ∨ . . . p9

i ,j .

For every two different values d , d′, and every square

we generate: ¬pd
i ,j ∨ ¬pd′

i ,j .

• For every value d and every column we generate:

pd
i ,1 ∨ . . . pd

i ,9.

Accordingly for all rows and 3 × 3 boxes.
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Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Set of clauses satisfiable ⇔ Sudoku has a solution

Let A be a satisfying assignment

A(pk
i ,j ) = 1 iff a k appears in line i , column j .
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Scheduling

Example: A simple scheduling problem

In a school there are three teachers with the following specialization

combinations:

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

8:00– 8:50 Mathematics German

9:00– 9:50 German German

10:00–10:50 Math Mathematics

Each teacher must teach at least two classes.
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Scheduling

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

1) 8:00– 8:50 Mathematics German

2) 9:00– 9:50 German German

3)10:00–10:50 Math Mathematics

Modeling:

Propositional variables: Ps,k ,N,f ‘Teacher N teaches subject f in group k in time slot s’
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Scheduling

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

1) 8:00– 8:50 Mathematics German

2) 9:00– 9:50 German German

3)10:00–10:50 Math Mathematics

Modeling:

Propositional variables: Ps,k ,N,f ‘Teacher N teaches subject f in group k in time slot s’

Rules: (P1,a,M,m ∨ P1,a,K ,m) ∧ (P1,b,S,d ∨ P1,b,K ,d )

(P2,a,S,d ∨ P2,a,K ,d ) ∧ (P2,b,S,d ∨ P2,b,K ,d )

(P3,a,M,m ∨ P3,a,K ,m) ∧ (P3,b,S,d ∨ P3,a,K ,d )

¬(P1,a,K ,m∧P1,b,K ,d ) ∧ ¬(P2,a,K ,d∧P2,b,K ,d ) ∧ ¬(P2,a,S,d∧P2,b,S,d )∧

¬(P3,a,K ,m∧P3,b,K ,m) ∧ (P1,a,M,m∧P1,b,M,m) . . .
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Program Verification

• Bounded model checking

• Model checking

• Invariant checking/generation

• Abstraction
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Finite-state systems

• X finite set of variables, V finite set of possible values for the variables

pixv (in the i-th step x takes value v)

• Other propositional variables qk , k ∈ K

• Transitions (variables change their value)

Tr(i , i + 1) :=
∨

(

Cond(pi
x1v

i
1

, . . . , pi
xnv in

) ∧
∧n

j=1 p
i+1

xj v
i+1
j

∧
∧

k q
i+1
k

)

(where v i+1
j

, qi+1
k

suitably computed)

F (pk
x1,v

k
1

, . . . , pk
xn ,vkn

, ...) property of assignments

Bounded model checking:

n
∧

j=1

p1xj ,vj∧
∧

q1k∧Tr(1, 2)∧ . . .∧Tr(k − 1, k)∧¬F (pk
x1 ,v

k
1
, . . . , pk

xn ,vkn
, ...)
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Example

Question: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}
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Example

Question: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

Simpler question:

|a| = 3; a[0]=7, a[1]=9, a[2]=4

does BubbleSort applied to this array

return a sorted array?

Encoding in propositional logic:

• pkij (at step k, a[i ] = k)

Examples: p107, p
1
19, p

1
24

• gtkij (at step k, a[i ] > a[j ])

Examples: gt110,¬gt
1
01, gt

1
02,¬gt

1
20, ...

Model updates with new propositional variables

(complicated; not very expressive)
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Abstraction-Based Verification

Abstract program 

feasible path 

location reachable

Concrete program 

feasible path 

location unreachable location unreachable

check feasibility 

⇓

conjunction of constraints: φ(1) ∧ Tr(1, 2) ∧ · · · ∧ Tr(n − 1, n) ∧ ¬safe(n)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible
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Tools for SAT checking

http://www.satcompetition.org/

Examples of SAT solvers:

MiniSat: http://minisat.se/

MathSAT: http://mathsat.fbk.eu/publications.html (much more)

zChaff: http://www.princeton.edu/ chaff/zchaff.html

Example of use
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Tools for SAT checking

Resolution-based theorem provers:

E: http://www4.informatik.tu-muenchen.de/ schulz/E/E.html

SPASS: http://www.spass-prover.org/

Vampire: http://www.vprover.org/

. . . full power for first-order logic (with equality)
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Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.
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2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers
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Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.
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Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages).

Most results established for one-sorted signatures extend in a

natural way to many-sorted signatures.
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Many-sorted Signature

A many-sorted signature

Σ = (S , Ω, Π),

fixes an alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f ) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.
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Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.
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Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.
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Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.
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Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f ) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.
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Terms

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .
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Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.
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Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.
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Literals

L ::= A (positive literal)

| ¬A (negative literal)
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Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)
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General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)
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Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .
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Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()
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Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P,Q,R, S , ...

predicate symbols with arity ≥ 1 are denoted

• p, q, r , ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...
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Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x , y(x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x , y(x ∗ s(y) ≈ x ∗ y + x)

∀x , y(s(x) ≈ s(y) → x ≈ y)

∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))
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Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be

defined in first-order logic with equality just with the help of +. The

first formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.
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Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

∀x , y car(cons(x , y)) ≈ x

∀x , y cdr(cons(x , y)) ≈ y

∀x cons(car(x), cdr(x)) ≈ x
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Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

∀x : array ∀i : index ∀j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

∀x : array ∀y : array (x ≈ y ↔ ∀i : index (read(x , i) ≈ read(y , i)))
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