
Decision Procedures for Verification

Part 1. Propositional Logic (4)

18.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Last time

Propositional Logic

Syntax

Semantics

Canonical forms

• Computing CNF/DNF by rewriting the formulae

• Structure-Preserving Translation for CNF

• Optimized translation using polarity

Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm

2

Today

• The Davis-Putnam-Logemann-Loveland Algorithm

• Applications of propositional logic

• First-order logic.

3

Applications of propositional logic

• A toy example (sudoku)

• Scheduling

• Verification

4

Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Idea: pd
i ,j = true iff the value of square i , j is d

For example: p8
3,5 = true

5

Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Coding SUDOKU by propositional clauses:

• Concrete values result in units: pd
i ,j .

• For every value, column we generate: ¬pd
i ,j ∨ ¬pd

i ,k (if j 6= k).

Accordingly for all rows and 3 × 3 boxes.

• For every square we generate: p1
i ,j ∨ . . . p9

i ,j .

For every two different values d , d′, and every square

we generate: ¬pd
i ,j ∨ ¬pd′

i ,j .

• For every value d and every column we generate:

pd
i ,1 ∨ . . . pd

i ,9.

Accordingly for all rows and 3 × 3 boxes.

6

Sudoku

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

Set of clauses satisfiable ⇔ Sudoku has a solution

Let A be a satisfying assignment

A(pk
i ,j) = 1 iff a k appears in line i , column j .

7

Scheduling

Example: A simple scheduling problem

In a school there are three teachers with the following specialization

combinations:

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

8:00– 8:50 Mathematics German

9:00– 9:50 German German

10:00–10:50 Math Mathematics

Each teacher must teach at least two classes.

8

Scheduling

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

1) 8:00– 8:50 Mathematics German

2) 9:00– 9:50 German German

3)10:00–10:50 Math Mathematics

Modeling:

Propositional variables: Ps,k ,N,f ‘Teacher N teaches subject f in group k in time slot s’

9

Scheduling

Müller Mathematics

Schmidt German

Körner Mathematics, German

Group a Group b

1) 8:00– 8:50 Mathematics German

2) 9:00– 9:50 German German

3)10:00–10:50 Math Mathematics

Modeling:

Propositional variables: Ps,k ,N,f ‘Teacher N teaches subject f in group k in time slot s’

Rules: (P1,a,M,m ∨ P1,a,K ,m) ∧ (P1,b,S,d ∨ P1,b,K ,d)

(P2,a,S,d ∨ P2,a,K ,d) ∧ (P2,b,S,d ∨ P2,b,K ,d)

(P3,a,M,m ∨ P3,a,K ,m) ∧ (P3,b,S,d ∨ P3,a,K ,d)

¬(P1,a,K ,m∧P1,b,K ,d) ∧ ¬(P2,a,K ,d∧P2,b,K ,d) ∧ ¬(P2,a,S,d∧P2,b,S,d)∧

¬(P3,a,K ,m∧P3,b,K ,m) ∧ (P1,a,M,m∧P1,b,M,m) . . .

10

Program Verification

• Bounded model checking

• Model checking

• Invariant checking/generation

• Abstraction

11

Finite-state systems

• X finite set of variables, V finite set of possible values for the variables

pixv (in the i-th step x takes value v)

• Other propositional variables qk , k ∈ K

• Transitions (variables change their value)

Tr(i , i + 1) :=
∨

(

Cond(pi
x1v

i
1

, . . . , pi
xnv in

) ∧
∧n

j=1 p
i+1

xj v
i+1
j

∧
∧

k q
i+1
k

)

(where v i+1
j

, qi+1
k

suitably computed)

F (pk
x1,v

k
1

, . . . , pk
xn ,vkn

, ...) property of assignments

Bounded model checking:

n
∧

j=1

p1xj ,vj∧
∧

q1k∧Tr(1, 2)∧ . . .∧Tr(k − 1, k)∧¬F (pk
x1 ,v

k
1
, . . . , pk

xn ,vkn
, ...)

12

Example

Question: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

13

Example

Question: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

Simpler question:

|a| = 3; a[0]=7, a[1]=9, a[2]=4

does BubbleSort applied to this array

return a sorted array?

Encoding in propositional logic:

• pkij (at step k, a[i] = k)

Examples: p107, p
1
19, p

1
24

• gtkij (at step k, a[i] > a[j])

Examples: gt110,¬gt
1
01, gt

1
02,¬gt

1
20, ...

Model updates with new propositional variables

(complicated; not very expressive)

14

Abstraction-Based Verification

Abstract program

feasible path

location reachable

Concrete program

feasible path

location unreachable location unreachable

check feasibility

⇓

conjunction of constraints: φ(1) ∧ Tr(1, 2) ∧ · · · ∧ Tr(n − 1, n) ∧ ¬safe(n)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

15

Tools for SAT checking

http://www.satcompetition.org/

Examples of SAT solvers:

MiniSat: http://minisat.se/

MathSAT: http://mathsat.fbk.eu/publications.html (much more)

zChaff: http://www.princeton.edu/ chaff/zchaff.html

Example of use

16

Tools for SAT checking

Resolution-based theorem provers:

E: http://www4.informatik.tu-muenchen.de/ schulz/E/E.html

SPASS: http://www.spass-prover.org/

Vampire: http://www.vprover.org/

. . . full power for first-order logic (with equality)

17

Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

18

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

19

Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.

20

Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages).

Most results established for one-sorted signatures extend in a

natural way to many-sorted signatures.

21

Many-sorted Signature

A many-sorted signature

Σ = (S , Ω, Π),

fixes an alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

22

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

23

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

24

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

25

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

26

Terms

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has exactly n

subtrees representing the n immediate subterms of v .

27

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

28

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

29

Literals

L ::= A (positive literal)

| ¬A (negative literal)

30

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

31

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

32

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .

33

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

34

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted P,Q,R, S , ...

predicate symbols with arity ≥ 1 are denoted

• p, q, r , ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...

35

Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x , y(x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x , y(x ∗ s(y) ≈ x ∗ y + x)

∀x , y(s(x) ≈ s(y) → x ≈ y)

∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

36

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be

defined in first-order logic with equality just with the help of +. The

first formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.

37

Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

∀x , y car(cons(x , y)) ≈ x

∀x , y cdr(cons(x , y)) ≈ y

∀x cons(car(x), cdr(x)) ≈ x

38

Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

∀x : array ∀i : index ∀j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

∀x : array ∀y : array (x ≈ y ↔ ∀i : index (read(x , i) ≈ read(y , i)))

39

