Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

February 3, 2017

Exercises for "Decision Procedures for Verification" Exercise sheet 10

Exercise 10.1: (4 P)
Let \mathcal{T} be the combination of $L I(\mathbb{Z})$ (linear arithmetic over \mathbb{Z}) and $U I F_{\Sigma}$, the theory of uninterpreted function symbols in the signature $\Sigma=\{\{f / 1, g / 2\}, \emptyset\}$.
Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the "guessing" version of the Nelson-Oppen procedure:
(1) $\phi=(c+d \approx e \wedge f(e) \approx c+d \wedge f(f(c+d)) \not \approx e)$.
(2) $\psi=(f(c)>0 \wedge f(d)>0 \wedge f(c)+f(d) \approx e \wedge g(c, e) \not \approx g(d, e))$

Exercise 10.2: ($2 P$)
Let \mathcal{T} be the combination of $L I(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and $U I F_{\Sigma}$, the theory of uninterpreted function symbols in the signature $\Sigma=\{\{f / 1, g / 2\}, \emptyset\}$.
Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):
(1) $\phi=(c+d \approx e \wedge f(e) \approx c+d \wedge f(f(c+d)) \not \approx e)$.
(2) $\phi_{2}=(g(c+d, e) \approx f(g(c, d)) \wedge c+e \approx d \wedge e \geq 0 \wedge c \geq d \wedge g(c, c) \approx e \wedge f(e) \not \approx g(c+c, 0))$

Exercise 10.3: (2 P)
Check the satisfiability w.r.t. $\mathcal{T}=L I(\mathbb{Q})$ of the following set of ground clauses using the "lazy" approach to SMT presented in the class.
$(\neg(0 \leq x) \vee \neg(y \leq z)) \wedge(\neg(z \leq x+y) \vee(y \leq z)) \wedge(\neg(0 \leq y) \vee(0 \leq x)) \wedge(z \leq x+y)$
For theory reasoning in $L I(\mathbb{Q})$ use the Fourier-Motzkin algorithm.

Exercise 10.4: (2 P)
Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=x \geq 1, R:=x \leq y, P:=x+x \leq 2$. Use a $\operatorname{DPLL}(\mathcal{T})$ method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$
\begin{array}{cc}
\left(C_{1}\right) & \neg R \vee P \\
\left(C_{2}\right) & \neg Q \vee \neg P \\
\left(C_{4}\right) & R \vee P
\end{array}
$$

Supplementary exercises.

Exercise 10.5: (4 P)
Let $\Sigma=(\Omega, \Pi)$ be a signature, and let $\Pi_{0} \subseteq \Pi \cup\{\approx\}$.
We say that a theory \mathcal{T} is convex if for all atomic formulae $A_{1}(\bar{x}), \ldots, A_{n}(\bar{x})$, and all atomic formulae $B_{1}(\bar{x}), \ldots, B_{k}(\bar{x})$ where $B_{i}(\bar{x})$ is the equality $s_{i} \approx t_{i}$, with s_{i}, t_{i} terms:
If $\mathcal{T} \models\left(\bigwedge_{i=1}^{n} A_{i}(\bar{x})\right) \rightarrow\left(\bigvee_{j=1}^{k} B_{j}(\bar{x})\right)$ then there exists $1 \leq j \leq k$ s.t. $\mathcal{T} \models\left(\bigwedge_{i=1}^{n} A_{i}(\bar{x})\right) \rightarrow B_{j}(\bar{x})$.
Let $\mathcal{T}_{\mathbb{Z}}$ be the theory of integers having as signature $\Sigma_{\mathbb{Z}}=(\Omega, \Pi)$, where $\Omega=\{\ldots,-2,-1,0,1,2, \ldots\} \cup$ $\{\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot, \ldots\} \cup\{+,-\}$ and $\Pi=\{\leq\}$, where:

- $\ldots,-2,-1,0,1,2, \ldots$ are constants (intended to represent the integers)
- $\ldots,-3 \cdot,-2 \cdot, 2 \cdot, 3 \cdot \ldots$ are unary functions (representing multiplication with constants)
-,+- are binary functions (usual addition/subtraction)
- \leq is a binary predicate.

The intended interpretation of $\mathcal{T}_{\mathbb{Z}}$ has domain \mathbb{Z}, and the function and predicate symbols are interpreted in the obvious way.
Show that:

- $\mathcal{T}_{\mathbb{Z}} \models[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow(z \approx u \vee z \approx v)]$
- $\mathcal{T}_{\mathbb{Z}} \nmid[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx u]$
- $\mathcal{T}_{\mathbb{Z}} \not \models[(1 \leq z \wedge z \leq 2 \wedge u \approx 1 \wedge v \approx 2) \rightarrow z \approx v]$

Is $\mathcal{T}_{\mathbb{Z}}$ convex?

Please submit your solution until Wednesday, February 8, 2017 at 12:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

