Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

February 12, 2017

Exercises for "Decision Procedures for Verification"
 Exercise sheet 11

Exercise 11.1: (4 P)

Use the Nelson-Oppen procedure for checking the satisfiability of the following formulae:

1. $1 \leq c \wedge c \leq 3 \wedge f(c) \not \approx f(1) \wedge f(c) \not \approx f(3) \wedge f(1) \not \approx f(2)$
in the combination $L I(\mathbb{Z}) \cup U I F_{\{f\}}$.
2. $f(c) \approx f(c+d) \wedge 1 \leq c \wedge c \leq d+e \wedge c+e \leq d \wedge d=1 \wedge f(c) \not \approx f(2)$
in the combination $L I(\mathbb{Z}) \cup U I F_{\{f\}}$.

Exercise 11.2: ($4 p P$)
Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=y \leq 1, R:=x \leq y, P:=y+y \leq 2, S:=x \geq 1$. Use a $\operatorname{DPLL}(\mathcal{T})$ method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

```
(1) \(\quad \neg R \vee P\)
(2) \(\neg Q \vee \neg P\)
(3) \(\quad R \vee P\)
(4)
    \(S\)
```

For checking the satisfiability of conjunctions of inequalities in $L I(\mathbb{Q})$ use the Fourier-Motzkin method.

In what follows we consider the theory of arrays defined in the lecture. We assume that the theory of indices \mathcal{T}_{i} is $L I(\mathbb{Z})$, and the theory of elements \mathcal{T}_{e} is $L I(\mathbb{Q})$.

Exercise 11.3: ($2 P$)
Which of the formulae below are (equivalent to formulae) in the array property fragment and which are not?
Justify your answer. (The universally quantified variables i, j are sort index; the indices k, l which are not universally quantified are considered to be constants of sort index)
(1) $\forall i(a[i+1]>a[i])$
(2) $\forall i(i<a[k] \rightarrow a[i]=a[k])$
(3) $\forall i, j\left(l_{1} \leq i \leq u_{1}<l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right.$
(3) $\forall i, j\left(l_{1}<i \leq u_{1}<l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right.$.

Supplementary exercises:

Exercise 11.4: (5 P)
Let \mathcal{T} be a theory with signature Σ and $\operatorname{Mod}(\mathcal{T})$ be its class of models. Show that if $\operatorname{Mod}(\mathcal{T})$ is closed under products then \mathcal{T} is convex.

Exercise 11.5: (5 P)

We say that a theory \mathcal{T} is stably infinite if for every quantifier-free formula ϕ, ϕ is satisfiable in \mathcal{T} iff ϕ is satisfiable in a (countably) infinite model of \mathcal{T}.
Let $\mathcal{T}_{1}, \mathcal{T}_{2}$ be stably infinite theories with disjoint signatures. Prove that their combination $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is stably infinite.

Please submit your solution until Wednesday, February 15, 2017 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

