## Universität Koblenz-Landau

## FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 142016

## Exercises for "Decision Procedures for Verification" <br> Exercise sheet 4

Exercise 4.1: (2 P)
Assume $P \succ Q \succ R$. Let $N$ be the following set of clauses:

| (1) | $\neg R \vee P$ |
| :---: | :---: |
| $(2)$ | $\neg Q \vee \neg P$ |
| $(3)$ | $Q$ |
| $(4)$ | $R \vee P$ |

Let $S$ be the selection function which selects $\neg R$ in clause (1) and $\neg Q$ in clause (2).
Use the ordered resolution calculus with selection $\operatorname{Res}_{S}^{\succ}$ described in the lecture for checking the satisfiability of the set $N$ of clauses.

Exercise 4.2: (2 P)
A propositional Horn clause is a clause which has at most one positive literal.
(Example: $\quad \neg P \vee Q \vee \neg R, \neg P \vee \neg R$ and $Q$ are Horn clauses, whereas $\neg P \vee Q \vee R$ and $Q \vee R$ are not Horn clauses.)
Prove: Every set $H$ of clauses with the following properties:
(i) $H$ consists only of Horn clauses;
(ii) Every clause in $H$ contains at least one negative literal;
is satisfiable.

Exercise 4.3: (5 P)
Let $H$ be a set of propositional Horn clauses. The size of $H$ is the number of all literals which occur in $H$. Prove that the resolution calculus $\operatorname{Res}_{S}^{\succ}$ (or the marking algorithm discussed in the lecture "Logik für Informatiker") can check the satisfiability of $H$ in time polynomial in the size of $H$.

Supplementary question: Can you give an algorithm for check the satisfiability of $H$ in time linear in the size of $H$ ?

Exercise 4.4: (2 P)
Let $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 3, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 2\}$; let $X$ be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over $\Sigma$ and $X$, which are atoms/literals/clauses/formulae (in first-order logic with equality), which are neither?
(a) $\neg p(g(a), f(x, y, g(a)))$
(b) $f(x, x, x) \approx x$
(c) $p(f(x, x, a), x) \vee p(a, b)$
(d) $p(\neg g(x), g(y))$
(e) $\neg p(f(x, y, y))$
(f) $\neg p(f(x, y), y) \vee p(x, y)$
(g) $p(a, b) \wedge p(x, y) \wedge y$
(h) $\exists y(\neg p(f(y, y, y), y))$
(i) $\forall x \forall y(f(p(x, y), x, x) \approx g(x))$

You will be able to solve this exercise only after the terminology is introduced in the lecture on Monday, 21.11.2016.

Exercise 4.5: (2 P)
Let $\Sigma=(S, \Omega, \Pi)$ be a many-sorted signature, where $S=\{$ int, list $\}, \Omega=\{$ cons, car, cdr, nil, $b\}$ and $\Pi=\{p\}$ with the following arities:

$$
\begin{aligned}
& a(\text { cons })=\text { int, list } \rightarrow \text { list } \quad a(\text { car })=\text { list } \rightarrow \text { int } \quad a(\mathrm{cdr})=\text { list } \rightarrow \text { list } \\
& a(\text { nil })=\rightarrow \text { list } \\
& a(b)=\rightarrow \text { int } \\
& a(p)=\text { int }, \text { list. }
\end{aligned}
$$

Let $X_{\text {int }}$ be the set of variables of sort int containing $\{i, j, k\}$, and let $X_{\text {list }}$ be the set of variables of sort list containing $\{x, y, z\}$. Let $X=\left\{X_{\text {int }}, X_{\text {list }}\right\}$. Which of the following expressions are terms over $\Sigma$ and $X$, which are atoms/literals/clauses/formulae ${ }^{1}$, which are neither?
(a) $\operatorname{cons}(\operatorname{cons}(b$, nil $)$, nil $)$
(b) $\operatorname{cons}(b, \operatorname{cons}(b$, nil $))$
(c) $\neg p(b, \operatorname{cons}(b, \operatorname{cons}(b$, nil $)))$
(d) $\neg p(\operatorname{cons}(b$, nil $), \operatorname{cons}(b, \operatorname{cons}(b$, nil $)))$
(e) $\operatorname{cons}(b, \operatorname{cons}(b$, nil $)) \approx_{l} \operatorname{cons}(\operatorname{cons}(x, b)$, nil $)$
(f) $\operatorname{cons}(i, \operatorname{cons}(b, \operatorname{nil})) \approx j$
(g) $p(\neg \operatorname{car}(x), x)$
(h) $\neg p(\operatorname{car}(x), x) \vee p(j, \operatorname{cons}(j, x))$
(i) $\neg p(b, x) \vee p(b, \operatorname{cons}(b, x)) \vee b$
(j) $\forall i$ : int, $\forall x$ : list $\left(\operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx_{l} x\right)$
$(\mathrm{k}) \exists i$ : int, $\forall y$ : list $\left(\operatorname{cons}(b, p(x, y)) \approx_{l} \operatorname{cdr}(y)\right)$
You will be able to solve this exercise only after the terminology is introduced in the lecture on Monday, 21.11.2016.

[^0]Supplementary exercise (will be discussed in the exercise session)

## Exercise 4.6: (5 P)

Let $N$ be a set of clauses in propositional logic with the property that each clause consists of two literals. Prove that the satisfiability of $N$ can be checked in polynomial time in the size of $N$.

Hint (way to a possible solution):

- How many clauses consisting of two literals (over a finite set of propositional variables $\Pi=\left\{P_{1}, \ldots, P_{n}\right\}$ ) exist?
- Analyze the form of possible resolution inferences from $N$.
- Let $N$ be a set of clauses in propositional logic with the property that each clause consists of two literals. Show that
- If $N$ is satisfiable then we cannot generate from $N$, using the resolution calculus, both $P \vee P$ and $\neg P \vee \neg P$ for some propositional variable $P$.
- If we cannot generate from $N$, using the resolution calculus, both $P \vee P$ and $\neg P \vee \neg P$ for some propositional variable $P$ then $N$ is satisfiable.
- Show that the number of inferences by resolution from $N$ which yield different clauses is polynomial in the size of $N$ and in the size of $\Pi$. Infer that the satisfiability of $N$ can be checked in polynomial time in the size of $N$.

Please submit your solution until Wednesday, November 23, 2014 at 12:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222 .


[^0]:    ${ }^{1}$ In first-order logic with equality, where equality between terms of sort int is $\approx_{i}$ and equality between terms of sort list is $\approx_{l}$.

