Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 22, 2016

Exercises for "Decision Procedures for Verification" Exercise sheet 5

Exercise 5.1: (3 P) Let $\Sigma = \{0, s, +\}$. Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x + 0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

Exercise 5.2: (2 P)

Compute a clausal normal form for the following formula:

 $\exists x \,\forall y \,(\forall z \,(p(y,z) \vee \neg x \approx y) \to (\forall z \,q(y,z) \wedge \neg r(x,y)))$

Exercise 5.3: (3 P)

Consider the following formulae:

- $F_1 := \forall x(S(x) \to \exists y(R(x,y) \land P(y)))$
- $F_2 := \forall x (P(x) \to Q(x))$
- $F_3 := \exists x S(x)$
- $G := \exists x \exists y (R(x, y) \land Q(y))$

Use the resolution calculus to prove that $\{F_1, F_2, F_3\} \models G$.

Supplementary exercise

Exercise 5.4: (4 P)

Let $\Sigma = (\Omega, \Pi)$ be a signature and X a set of variables. Let \mathcal{A} be a Σ -structure and $\beta : X \to U_{\mathcal{A}}$ a variable assignment.

(1) Prove that for every formula $F \in F_{\Sigma}(X)$ and every $x \in X$, the truth values $\mathcal{A}(\beta)(\forall xF)$ and $\mathcal{A}(\beta)(\exists xF)$ do not depend on $\beta(x)$.

- (2) Use (1) to show that if G is a closed formula in $F_{\Sigma}(X)$, then the truth value of G in \mathcal{A} w.r.t. β , $\mathcal{A}(\beta)(G)$ does not depend on the way β is defined.
- (3) Use (2) to prove that $\mathsf{Th}(\mathsf{Mod}(\mathcal{F})) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{F} \models G\}.$

Please submit your solution until Wednesday, November 31, 2016 at 12:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.