Universität Koblenz-Landau

FB 4 Informatik

Exercises for "Decision Procedures for Verification"
 Exercise sheet 8

Exercise 8.1: (2 P)
Let ϕ be the following (ground) formula:

$$
f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)
$$

(1) Compute $F L A T(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form $f\left(c^{\prime}\right)$, where c^{\prime} is a constant, with a new constant).
(2) Compute $F C(\phi)$ (the set of functional consistency axioms associated with the flattening above):

$$
F C(\phi)=\left\{c_{1} \approx c_{2} \rightarrow d_{1} \approx d_{2} \mid d_{i} \text { is introduced as an abbreviation for } f\left(c_{i}\right)\right\}
$$

(3) Check whether $F L A T(\phi) \wedge F C(\phi)$ is satisfiable.
(4) Is ϕ is satisfiable? Justify your answer.

Exercise 8.2: (6 P)
Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.
(1) $\phi_{1}=f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not \approx f(c)$.
(2) $\phi_{2}=f(f(c)) \approx f(c) \wedge f(c) \approx d \wedge f(d) \not \approx f(f(c))$.

Exercise 8.3: (6 P)

Check the satisfiability of the following formulae in positive difference logic w.r.t. \mathbb{Q}; in case of satisfiability find a satisfying assignment.
(1) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3$.
(2) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-x \leq 1$.
(3) $x-y \leq 3 \wedge y-z \leq 2 \wedge x-z \leq 1 \wedge x-u \leq-3 \wedge u-z \leq 3 \wedge z-x \leq 1$.

Please submit your solution until Wednesday, January 15, 2014 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

