Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 12, 2017

Exercises for "Decision Procedures for Verification" Exercise sheet 8

Exercise 8.1: (2 P)Let ϕ be the following (ground) formula:

 $f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not\approx f(c).$

- (1) Compute $FLAT(\phi)$ (the formula obtained by recursively replacing, in a bottom-up fashion, any term of the form f(c'), where c' is a constant, with a new constant).
- (2) Compute $FC(\phi)$ (the set of functional consistency axioms associated with the flattening above):

 $FC(\phi) = \{c_1 \approx c_2 \rightarrow d_1 \approx d_2 \mid d_i \text{ is introduced as an abbreviation for } f(c_i)\}.$

- (3) Check whether $FLAT(\phi) \wedge FC(\phi)$ is satisfiable.
- (4) Is ϕ is satisfiable? Justify your answer.

Exercise 8.2: (6 P)

Check the satisfiability of the following ground formulae using the algorithm based on congruence closure presented in the lecture.

(1)
$$\phi_1 = f(f(c)) \approx f(c) \wedge f(f(c)) \approx f(d) \wedge d \not\approx f(c).$$

(2) $\phi_2 = f(f(c)) \approx f(c) \wedge f(c) \approx d \wedge f(d) \not\approx f(f(c)).$

Exercise 8.3: (6 P)

Check the satisfiability of the following formulae in positive difference logic w.r.t. \mathbb{Q} ; in case of satisfiability find a satisfying assignment.

- (1) $x y \le 3 \land y z \le 2 \land x z \le 1 \land x u \le -3.$
- (2) $x y \le 3 \land y z \le 2 \land x z \le 1 \land x u \le -3 \land u x \le 1$.
- $(3) \ x y \leq 3 \ \land \ y z \leq 2 \ \land \ x z \leq 1 \ \land \ x u \leq -3 \ \land \ u z \leq 3 \ \land \ z x \leq 1.$

Please submit your solution until Wednesday, January 15, 2014 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to **sofronie@uni-koblenz.de** with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.