Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

Exercises for "Decision Procedures for Verification"
 Exercise sheet 9

Exercise 9.1: (2 P)

Check the satisfiability of the following ground formula using the algorithm based on congruence closure presented in the lecture.

- $\phi=h(c, e) \approx d \wedge g(d) \approx e \wedge g(h(c, g(d))) \not \approx e$.

Exercise 9.2: (4 P)

(I) Check the satisfiability of the following conjunctions in difference logic w.r.t. \mathbb{Z}; in case of satisfiability find a satisfying assignment.
(1) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-3 \wedge x-u \leq-3$.
(2) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-5 \wedge x-u<-3 \wedge u-x \leq 4$.
(3) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-5 \wedge x-u<-3 \wedge u-x \leq 4$.
(II) Check the satisfiability of the following formulae in difference logic w.r.t. \mathbb{Q}; in case of satisfiability find a satisfying assignment.
(1) $x-y<4 \wedge y-z \leq 2 \wedge z-x<-5 \wedge x-u \leq-3$.
(2) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-6 \wedge x-u \leq-4 \wedge u-x \leq 4$.
(3) $x-y<4 \wedge y-z \leq 2 \wedge z-x \leq-7 \wedge x-u<-3 \wedge u-x \leq 4$.

Hint: It is sufficient to check the existence of negative cycles in the associated graphs by looking at the graphs; in this assignment you do not have to use the Bellman-Ford algorithm for this.

Exercise 9.3: (4 P)

(I) Let F_{1} be the following conjunction (in linear rational arithmetic $\operatorname{LI}(\mathbb{Q})$):

$$
F_{1}: \quad \begin{aligned}
x_{1}+x_{2}+2 x_{3} & =2 \\
x_{1}+x_{3}+\frac{1}{5} & <0 \\
x_{2}-x_{3} & \leq \frac{1}{2} \\
x_{1}+5 x_{3} & \leq 5
\end{aligned}
$$

Check the satisfiability of F_{1} using the Fourier-Motzking method for quantifier elimination.
(II) Consider the following formulae (in linear rational arithmetic $\operatorname{LI}(\mathbb{Q})$):

$$
\begin{aligned}
& F_{2}=\exists x \forall y \exists z(y>0 \vee(x+y-z<0 \wedge x+y+z<0)) \\
& F_{3}=\forall x \exists y \exists z(2 x-y>0 \wedge 2 y-z>0 \wedge z-y \geq 2 \wedge x-y<0 \wedge y<0)
\end{aligned}
$$

Check whether F_{2} and F_{3} are valid or satisfiable using the Fourier-Motzkin method for quantifier elimination.

Exercise 9.4: (2 P)

Let F_{1} be the following conjunction (in linear rational arithmetic $L I(\mathbb{Q})$):

$$
\begin{aligned}
F_{1}: \quad x_{1}+x_{2}+2 x_{3} & =2 \\
x_{1}+x_{3}+\frac{1}{5} & <0 \\
x_{2}-x_{3} & \leq \frac{1}{2} \\
x_{1}+5 x_{3} & <5
\end{aligned}
$$

Check the satisfiability of F_{1} using the Loos-Weispfenning method for quantifier elimination.

Please submit your solution until Tuesday, January 24, 2017 at 13:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

