Let \mathcal{T} be the combination of $LI(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and UIF_{Σ} , the theory of uninterpreted function symbols in a signature Σ containing the unary function h.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):

• ϕ : $a+h(h(h(b))+c)\approx e \wedge h(b)\approx b' \wedge e\approx h(b')+c \wedge a+h(e)\not\approx e$.

Solution

Step 1: Purification

$$a + h(\underbrace{h(h(b))}_{b_1} + c) \approx e \quad \land \quad h(b) \approx b' \quad \land \quad e \approx \underbrace{h(b')}_{b''} + c \quad \land \quad a + \underbrace{h(e)}_{e_1} \not\approx e.$$

$$\underbrace{LI(\mathbb{Q})}_{b_2} \qquad \underbrace{UIF}_{a + b_2 \approx e} \qquad h(h(b)) \approx b_1$$

$$b_1 + c \approx c_1 \qquad h(c_1) \approx b_2$$

$$e \approx b'' + c \qquad h(b) \approx b'$$

$$a + e_1 \not\approx e \qquad h(b') \approx b''$$

$$h(e) \approx e_1$$

$$\phi_1 \qquad \phi_2$$

Both ϕ_1 and ϕ_2 are satisfiable, so we start Step 2.

Step 2: Propagation

Shared constants: $\{b_1, b_2, b'', e, e_1\}$.

We notice that $\phi_2 \models_{UIF} b_1 \approx b''$

Indeed, as $b(b) \approx b'$ we have $h(h(b)) \approx h(b')$. ϕ_1 contains $h(h(b)) \approx b_1 \wedge h(b') \approx b''$, thus $\phi_2 \models_{UIF} b_1 \approx b''$.

We propagate $b_1 \approx b''$ and obtain:

$LI(\mathbb{Q})$	UIF
$a + b_2 \approx e$	$h(h(b)) \approx b_1$
$b_1 + c \approx c_1$	$h(c_1) \approx b_2$
$e \approx b^{\prime\prime} + c$	$h(b) \approx b'$
$a + e_1 \not\approx e$	$h(b') \approx b''$
	$h(e) \approx e_1$
$b_1 \approx b^{\prime\prime}$	$b_1 \approx b^{\prime\prime}$
ϕ_1^1	ϕ_2^1

We notice that $\phi_1^1 \models_{LI(Q)} e \approx c_1$

Inded, as $b_1 \approx b''$ we have $b_1 + c \approx b'' + c$, so since ϕ_1^1 contains $b_1 + c \approx c_1$ and $b'' + c \approx e$ we obtain $\phi_1^1 \models e \approx c_1$.

We propagate $e \approx c_1$ and obtain:

$LI(\mathbb{Q})$	UIF
$a + b_2 \approx e$	$h(h(b)) \approx b_1$
$b_1 + c \approx c_1$	$h(c_1) \approx b_2$
$e \approx b^{\prime\prime} + c$	$h(b) \approx b'$
$a + e_1 \not\approx e$	$h(b') \approx b''$
	$h(e) \approx e_1$
$b_1 \approx b^{\prime\prime}$	$b_1 \approx b^{\prime\prime}$
$e \approx c_1$	$e \approx c_1$
ϕ_1^2	ϕ_2^2

We notice that $\phi_2^2 \models_{UIF} b_2 \approx e_1$

Inded, as $e \approx c_1$ we have $h(e) \approx h(c_1)$. ϕ_2^2 contains $h(e) \approx e_1 \land h(c_1) \approx b_2$, thus $\phi_2 \models_{UIF} b_2 \approx e_1$.

We propagate $b_2 \approx e_1$ and obtain:

$LI(\mathbb{Q})$	UIF
$a + b_2 \approx e$	$h(h(b)) \approx b_1$
$b_1 + c \approx c_1$	$h(c_1) \approx b_2$
$e \approx b'' + c$	$h(b) \approx b'$
$a + e_1 \not\approx e$	$h(b') \approx b''$
	$h(e) \approx e_1$
$b_1 \approx b^{\prime\prime}$	$b_1 \approx b^{\prime\prime}$
$e \approx c_1$	$e \approx c_1$
$b_2 \approx e_1$	$b_2 \approx e_1$
ϕ_1^3	ϕ_2^3

We now show that ϕ_1^3 is unsatisfiable:

From $b_2 \approx e_1$ it follows that $a + b_2 \approx a + e_1$. But ϕ_1^3 contains $a + b_2 \approx e$ and $a + e_1 \not\approx e$. Contradiction.

Thus, the formula ϕ is unsatisfiable.