Decision Procedures for Verification

Combinations of Decision Procedures (2)

2.02.2017

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Combinations of Decision Procedures

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: \mathcal{T}_1 , \mathcal{T}_2 first-order theories with signatures Σ_1 , Σ_2

Assume that $\Sigma_1 \cap \Sigma_2 = \emptyset$ (share only \approx)

 P_i decision procedures for satisfiability of ground formulae w.r.t. T_i

 ϕ quantifier-free formula over $\pmb{\Sigma}_1 \cup \pmb{\Sigma}_2$

Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto DNF(\phi)$ $DNF(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

Example

[Nelson & Oppen, 1979]

Theories

${\cal R}$	theory of rationals	$\Sigma_{\mathcal{R}} = \{\leq$, +, -, 0, 1 $\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}} = \{ car, cdr, cons \}$	\approx
${\cal E}$	theory of equality (UIF)	Σ : free function and predicate symbols	\approx

Problems:

- 1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \land y \leq x + \operatorname{car}(\operatorname{cons}(0, x)) \land P(h(x) h(y)) \rightarrow P(0))$
- 2. Is the following conjunction:

$$c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

 $c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \wedge P(h(c) - h(d)) \wedge \neg P(0)$$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c) - h(d)}_{c_2}) \land \neg P(0)$$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$\textit{c}_{1}pprox ext{car(cons(c_{5}, c))}$	P(<mark>c</mark> 2)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox {\sf car}({\sf cons}({m c_5},{m c}))$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
satisfiable	satisfiable	satisfiable

deduce and propagate equalities between constants entailed by components

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox car(cons(extsf{c_5}, extsf{c}))$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$

 $c_1 pprox c_5$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	E
$c \leq d$	$c_1 pprox car(cons(frac{c_5}, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1pprox c_5$	$c_1pprox c_5$	

cpprox d

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$\textit{c}_1 pprox ext{car(cons(\textit{c}_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1pprox c_5$	$c_1pprox c_5$	cpprox d
$c \approx d$	-	$c_3 pprox c_4$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	E
$c \leq d$	$c_1 pprox {\sf car}({\sf cons}({m c_5},{m c}))$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$\sim \sim \sim$	$\sim \sim \sim$	$c\sim d$
$c_1 \approx c_5$	$c_1 pprox c_5$	$c \approx a$
cpprox d		$c_3 \approx c_4$
$c_2 pprox c_5$		\perp

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$:

where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$:

where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

not problematic; requires linear time

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; termination guaranteed Sound: if inconsistency detected input unsatisfiable Complete: under additional assumptions

Implementation

 ϕ conjunction of literals

Step 1. Purification: $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$, where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_i \cup \phi_i$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_i \cup \phi_i$; make case split by adding some of these equalities to ϕ_1, ϕ_2 . Repeat as long as possible.

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Termination:only finitely many shared variables to be identified**Soundness:**If procedure answers "unsatisfiable" then ϕ is unsatisfiable

Proof: Assume that ϕ is satisfiable. Then $\phi_1 \wedge \phi_2$ satisfiable.

- The procedure cannot answer "unsatisfiable" in Step 2.
- Let $(\mathcal{M}, \beta) \models \phi_1 \land \phi_2$. Assume that $(\mathcal{M}, \beta) \models \bigwedge_{(c_i, c_j) \in E} c_i \approx c_j \land \bigwedge_{(c_i, c_j) \notin E} c_i \not\approx c_j$

Then $(\mathcal{M}_{|\Sigma_1}, \beta) \models \phi_1 \land \bigwedge_{(c_i, c_j) \in E} c_i \approx c_j$ $(\mathcal{M}_{|\Sigma_2}, \beta) \models \phi_2 \land \bigwedge_{(c_i, c_j) \in E} c_i \approx c_j$

Guessing:

ing: $\bigwedge_{(c_i,c_j)\in E} c_i \approx c_j \wedge \bigwedge_{(c_i,c_j)\not\in E} c_i \not\approx c_j$ "satisfiable arrangement".

Backtracking: Procedure answers satisfiable on the corresponding branch.

Termination:	only finitely many shared variables to be identified
Soundness:	If procedure answers "unsatisfiable" then ϕ is unsatisfiable
Completeness:	Under additional hypotheses

Example:	E_1	E_2
	$f(g(x),g(y))\approx x$	$k(x) \approx k(x)$
	$f(g(x), h(y)) \approx y$	
	non-trivial	non-trivial
$g(c) \approx h(c) \wedge k(c) \not\approx$	C	
	$g(c) \approx h(c)$	k(c)≉c
	satisfiable in E_1	satisfiable in E_2

no equations between shared variables; Nelson-Oppen answers "satisfiable"

Example:	E_1	E_2	
	$f(g(x),g(y))\approx x$	$k(x) \approx k(x)$	
	$f(g(x), h(y)) \approx y$		
	non-trivial	non-trivial	
$g(c) \approx h(c) \wedge k(c) ot\approx$	с С		
	$g(c) \approx h(c)$	k(c)≉c	
	satisfiable in E_1	satisfiable in E	2
no equations betwee	en shared variables; N	lelson-Oppen a	nswers ''satisfiable'
A model of E_1 sat	tisfies $g(c)pprox h(c)$ i	ff $\exists e \in A \text{ s.t.}$	g(e) = h(e).
Then, for all $a \in A$	A: $a = f_A(g(a), g(e))$	$))=f_{A}(g(a),h(a))$	(e)) = e

 $g(c) \approx h(c) \wedge k(c) \not\approx c$ unsatisfiable

Another example

 \mathcal{T}_1 theory admitting models of cardinality at most 2

 \mathcal{T}_2 theory admitting models of any cardinality

 $f_1 \in \Sigma_1, f_2 \in \Sigma_2$ such that $\mathcal{T}_i \not\models \forall x, y \quad f_i(x) = f_i(y).$

$$\phi = f_1(c_1) \not\approx f_1(c_2) \wedge f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$$

$$\phi_1 = f_1(c_1) \not\approx f_1(c_2) \quad \phi_2 = f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$$

The Nelson-Oppen procedure returns "satisfiable"

$$\begin{aligned} \mathcal{T}_1 \cup \mathcal{T}_2 &\models \forall x, y, z(f_1(x) \not\approx f_1(y) \land f_2(x) \not\approx f_2(z) \land f_2(y) \not\approx f_2(z) \\ &\rightarrow (x \not\approx y \land x \not\approx z \land y \not\approx z)) \end{aligned}$$

 $f_1(c_1) \not\approx f_1(c_2) \wedge f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$ unsatisfiable

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality **Solution:** Consider stably infinite theories.

 \mathcal{T} is stably infinite iff for every quantifier-free formula ϕ ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T} .

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Guessing version: C set of constants shared by ϕ_1 , ϕ_2

R equiv. relation assoc. with partition of $C \mapsto ar(C, R) = \bigwedge_{R(c,d)} c \approx d \land \bigwedge_{\neg R(c,d)} c \not\approx d$

Lemma. Assume that there exists a partition of C s.t. $\phi_i \wedge ar(C, R)$ is \mathcal{T}_i -satisfiable. Then $\phi_1 \wedge \phi_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiable.

Idea of proof: Let $\mathcal{A}_i \in Mod(\mathcal{T}_i)$ s.t. $\mathcal{A}_i \models \phi_i \wedge ar(C, R)$. Then $c_{A_1} = d_{A_1}$ iff $c_{A_2} = d_{A_2}$. Let $i : \{c_{A_1} \mid c \in C\} \rightarrow \{c_{A_2} \mid c \in C\}$, $i(c_{A_1}) = c_{A_2}$ well-defined; bijection. Stable infinity: can assume w.l.o.g. that $\mathcal{A}_1, \mathcal{A}_2$ have the same cardinality Let $h : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ bijection s.t. $h(c_{A_1}) = c_{A_2}$ Use h to transfer the Σ_1 -structure on \mathcal{A}_2 .

Theorem. If $\mathcal{T}_1, \mathcal{T}_2$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_1, \mathcal{T}_2$ to $\mathcal{T}_1 \cup \mathcal{T}_2$.

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation
 - (a) decide whether there is a disjunction of equalities between variables
 - (b) investigate different branches corresponding to disjunctions

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation

${\mathcal T}$ is convex	iff	for every quantifier-free formula ϕ ,
		$\phi \models \bigvee_i x_i \approx y_i$ implies $\phi \models x_j \approx y_j$ for some <i>j</i> .

 $\mapsto \mathsf{No} \text{ branching}$

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation

${\mathcal T}$ is convex	iff	for every quantifier-free formula ϕ ,
		$\phi \models \bigvee_i x_i \approx y_i$ implies $\phi \models x_j \approx y_j$ for some <i>j</i> .

 $\mapsto \mathsf{No} \ \mathsf{branching}$

Theorem.	Let \mathcal{T}_1 and \mathcal{T}_2 be convex and stably infinite; $\Sigma_1 \cap \Sigma_2 = \emptyset$
	If satisfiability of conjunctions of literals in \mathcal{T}_i is in PTIME
	Then satisfiability of conjunctions of literals in $\mathcal{T}_1\cup\mathcal{T}_2$ is in <code>PTIME</code>

In general: non-deterministic procedure

Theorem.	Let \mathcal{T}_1 and \mathcal{T}_2 be convex and stably infinite; $\Sigma_1 \cap \Sigma_2 = \emptyset$
	If satisfiability of conjunctions of literals in \mathcal{T}_i is in NP
	Then satisfiability of conjunctions of literals in $\mathcal{T}_1\cup\mathcal{T}_2$ is in NP