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Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T
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Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

Problems:

1. R∪L∪E |= ∀x , y(x≤y ∧ y≤x+car(cons(0, x)) ∧ P(h(x)−h(y)) → P(0))

2. Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E?
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)) ∧ ¬P(0)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)
︸ ︷︷ ︸

c2

) ∧ ¬P(0)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

5



Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)
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Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

satisfiable satisfiable satisfiable
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

deduce and propagate equalities between constants entailed by components

6



Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5

c ≈ d
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4
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Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P( 0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

c2 ≈ c5 ⊥
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The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

7



The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions
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Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.
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The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified
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The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Proof: Assume that φ is satisfiable. Then φ1 ∧ φ2 satisfiable.

• The procedure cannot answer “unsatisfiable” in Step 2.

• Let (M, β) |= φ1 ∧ φ2. Assume that (M, β) |=
∧

(ci ,cj )∈E

ci ≈ cj ∧
∧

(ci ,cj ) 6∈E

ci 6≈ cj

Then (M|Σ1
, β) |= φ1 ∧

∧

(ci ,cj )∈E

ci ≈ cj

(M|Σ2
, β) |= φ2 ∧

∧

(ci ,cj )∈E

ci ≈ cj

Guessing:
∧

(ci ,cj )∈E

ci ≈ cj ∧
∧

(ci ,cj ) 6∈E

ci 6≈ cj “satisfiable arrangement”.

Backtracking: Procedure answers satisfiable on the corresponding branch.
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The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Completeness: Under additional hypotheses
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Completeness

Example:
E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”
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Completeness

Example: E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

A model of E1 satisfies g(c) ≈ h(c) iff ∃e ∈ A s.t. g(e) = h(e).

Then, for all a ∈ A: a = fA(g(a), g(e)) = fA(g(a), h(e)) = e

g(c)≈h(c) ∧ k(c)6≈c unsatisfiable
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Completeness

Another example

T1 theory admitting models of cardinality at most 2

T2 theory admitting models of any cardinality

f1 ∈ Σ1, f2 ∈ Σ2 such that Ti 6|= ∀x , y fi (x) = fi (y).

φ = f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

φ1 = f1(c1)6≈f1(c2) φ2 = f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

The Nelson-Oppen procedure returns “satisfiable”

T1 ∪ T2 |= ∀x , y , z(f1(x)6≈f1(y) ∧ f2(x)6≈f2(z) ∧ f2(y)6≈f2(z)

→ (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z))

f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3) unsatisfiable
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Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

T is stably infinite iff for every quantifier-free formula φ

φ satisfiable in T iff φ satisfiable in an infinite model of T .

Note: This restriction is not mentioned in [Nelson Oppen 1979];

introduced by Oppen in 1980.
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Completeness

Guessing version: C set of constants shared by φ1,φ2

R equiv. relation assoc. with partition of C 7→ar(C ,R) =
∧

R(c ,d)

c ≈ d ∧
∧

¬R(c ,d)

c 6≈ d

Lemma. Assume that there exists a partition of C s.t. φi ∧ ar(C ,R) is

Ti -satisfiable. Then φ1 ∧ φ2 is T1 ∪ T2-satisfiable.

Idea of proof: Let Ai ∈ Mod(Ti ) s.t. Ai |=φi∧ar(C ,R). Then cA1=dA1 iff cA2=dA2 .

Let i : {cA1 | c ∈ C} → {cA2 | c ∈ C}, i(cA1 ) = cA2 well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A1,A2 have the same cardinality

Let h : A1 → A2 bijection s.t. h(cA1 ) = cA2

Use h to transfer the Σ1-structure on A2.

Theorem. If T1, T2 are both stably infinite and the shared signature is empty

then the Nelson-Oppen procedure is sound, complete and terminating.

Thus, it transfers decidability of ground satisfiability from T1, T2 to T1 ∪ T2.
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Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

(a) decide whether there is a disjunction of equalities between variables

(b) investigate different branches corresponding to disjunctions
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Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching
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Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in PTIME

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in PTIME
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Complexity

In general: non-deterministic procedure

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in NP

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in NP
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