Decision Procedures for Verification

Combinations of Decision Procedures (2)

2.02.2017

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Last time

Combinations of Decision Procedures

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: $\mathcal{T}_{1}, \mathcal{T}_{2}$ first-order theories with signatures Σ_{1}, Σ_{2}
Assume that $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ (share only \approx)
P_{i} decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_{i}
ϕ quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto D N F(\phi)$
$\operatorname{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

Example

[Nelson \& Oppen, 1979]

Theories

\mathcal{R}	theory of rationals	$\Sigma_{\mathcal{R}}=\{\leq,+,-, 0,1\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}}=\{$ car, cdr, cons $\}$	\approx
\mathcal{E}	theory of equality (UIF)	$\Sigma:$ free function and predicate symbols	\approx

Problems:

1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \vDash \forall x, y(x \leq y \wedge y \leq x+\operatorname{car}(\operatorname{cons}(0, x)) \wedge P(h(x)-h(y)) \rightarrow P(0))$
2. Is the following conjunction:

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} ?$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)-h(d)}_{c_{2}}) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}})
$$

Step 1: Purification

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

Step 1: Purification

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) & \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
\text { satisfiable } & \text { satisfiable }
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{4}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

deduce and propagate equalities between constants entailed by components

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
& \mathcal{E} \\
\hline \boldsymbol{R} \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) \\
& \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d &
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) & \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
& c_{1} \approx c_{5}
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) & \wedge P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
c_{2} \approx c_{5} & c_{3} \approx c_{4} \\
& \\
c_{1} \approx c_{5} & \perp
\end{array}
$$

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ. not problematic; requires linear time

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables. until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions

Implementation

ϕ conjunction of literals
Step 1. Purification: $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$, where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
How to implement Propagation?
Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i}$; make case split by adding some of these equalities to ϕ_{1}, ϕ_{2}. Repeat as long as possible.

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified
Soundness: If procedure answers "unsatisfiable" then ϕ is unsatisfiable

Proof: Assume that ϕ is satisfiable. Then $\phi_{1} \wedge \phi_{2}$ satisfiable.

- The procedure cannot answer "unsatisfiable" in Step 2.
- Let $(\mathcal{M}, \beta) \models \phi_{1} \wedge \phi_{2}$. Assume that $(\mathcal{M}, \beta) \models \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$

Then

$$
\begin{aligned}
& \left(\mathcal{M}_{\mid \Sigma_{1}}, \beta\right) \models \phi_{1} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \\
& \left(\mathcal{M}_{\mid \Sigma_{2}}, \beta\right) \models \phi_{2} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j}
\end{aligned}
$$

Guessing: $\bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$ "satisfiable arrangement".
Backtracking: Procedure answers satisfiable on the corresponding branch.

The Nelson-Oppen algorithm

Soundness:
Completeness:

Termination: only finitely many shared variables to be identified If procedure answers "unsatisfiable" then ϕ is unsatisfiable Under additional hypotheses

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"
A model of E_{1} satisfies $g(c) \approx h(c) \quad$ iff $\quad \exists e \in A$ s.t. $g(e)=h(e)$.
Then, for all $a \in A: \quad a=f_{A}(g(a), g(e))=f_{A}(g(a), h(e))=e$
$g(c) \approx h(c) \wedge k(c) \not \approx c \quad$ unsatisfiable

Completeness

Another example

\mathcal{T}_{1} theory admitting models of cardinality at most 2
\mathcal{T}_{2} theory admitting models of any cardinality

$$
\begin{aligned}
& f_{1} \in \Sigma_{1}, f_{2} \in \Sigma_{2} \quad \text { such that } \quad \mathcal{T}_{i} \not \models \forall x, y \quad f_{i}(x)=f_{i}(y) . \\
& \phi=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \\
& \phi_{1}=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \quad \phi_{2}=f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right)
\end{aligned}
$$

The Nelson-Oppen procedure returns "satisfiable"
$\mathcal{T}_{1} \cup \mathcal{T}_{2} \models \forall x, y, z\left(f_{1}(x) \not \approx f_{1}(y) \wedge f_{2}(x) \not \approx f_{2}(z) \wedge f_{2}(y) \not \approx f_{2}(z)\right.$

$$
\rightarrow(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z))
$$

$f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \quad$ unsatisfiable

Completeness

Cause of incompleteness
There exist formulae satisfiable in finite models of bounded cardinality
Solution: Consider stably infinite theories.
\mathcal{T} is stably infinite iff for every quantifier-free formula ϕ
ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T}.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_{1}, ϕ_{2}
R equiv. relation assoc. with partition of $C \mapsto a r(C, R)=\bigwedge_{R(c, d)} c \approx d \wedge \bigwedge_{\neg R(c, d)} c \not \approx d$
Lemma. Assume that there exists a partition of C s.t. $\phi_{i} \wedge \operatorname{ar}(C, R)$ is \mathcal{T}_{i}-satisfiable. Then $\phi_{1} \wedge \phi_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiable.

Idea of proof: Let $\mathcal{A}_{i} \in \operatorname{Mod}\left(\mathcal{T}_{i}\right)$ s.t. $\mathcal{A}_{i} \models \phi_{i} \wedge \operatorname{ar}(C, R)$. Then $c_{A_{1}}=d_{A_{1}}$ iff $c_{A_{2}}=d_{A_{2}}$.
Let $i:\left\{c_{A_{1}} \mid c \in C\right\} \rightarrow\left\{c_{A_{2}} \mid c \in C\right\}, i\left(c_{A_{1}}\right)=c_{A_{2}}$ well-defined; bijection.
Stable infinity: can assume w.l.o.g. that $\mathcal{A}_{1}, \mathcal{A}_{2}$ have the same cardinality
Let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ bijection s.t. $h\left(c_{A_{1}}\right)=c_{A_{2}}$
Use h to transfer the Σ_{1}-structure on \mathcal{A}_{2}.

Theorem. If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_{1}, \mathcal{T}_{2}$ to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
(a) decide whether there is a disjunction of equalities between variables
(b) investigate different branches corresponding to disjunctions

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free formula ϕ,
$\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some j.
\mapsto No branching

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free formula ϕ,

$$
\phi \models \bigvee_{i} x_{i} \approx y_{i} \text { implies } \phi \models x_{j} \approx y_{j} \text { for some } j
$$

\mapsto No branching

Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in PTIME Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in PTIME

Complexity

In general: non-deterministic procedure
Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$
If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in NP Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in NP

