Decision Procedures for Verification

Combinations of Decision Procedures (3)

6.02.2017

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Last time

Combinations of Decision Procedures

Example

[Nelson & Oppen, 1979]

Theories

\mathcal{R}	theory of rationals	$\Sigma_{\mathcal{R}} = \{\leq,+,-,0,1\}$	\approx
$\mathcal L$	theory of lists	$\Sigma_{\mathcal{L}} = \{car, cdr, cons\}$	\approx
${\cal E}$	theory of equality (UIF)	Σ : free function and predicate symbols	\approx

Problems:

- 1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \land y \leq x + \text{car}(\text{cons}(0, x)) \land P(h(x) h(y)) \rightarrow P(0))$
- 2. Is the following conjunction:

$$c \leq d \wedge d \leq c + \operatorname{car}(\operatorname{cons}(0,c)) \wedge P(h(c) - h(d)) \wedge \neg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

Step 1: Purification

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

Step 1: Purification

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	${\cal L}$	${\cal E}$
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 pprox h(d)$

Step 1: Purification

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	${\cal L}$	\mathcal{E}
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
satisfiable	satisfiable	satisfiable

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	\mathcal{E}
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$

deduce and propagate equalities between constants entailed by components

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	\mathcal{E}
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
	$c_1 \sim c_2$	
	$c_1 \approx c_5$	

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	$\mathcal L$	${\cal E}$
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
$c_1 pprox c_5$	$c_1 pprox c_5$	
c pprox d		

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	$\mathcal L$	\mathcal{E}
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
$c_1pprox c_5$	$c_1 pprox c_5$	cpprox d
$c \approx d$	31 1 3	$c_3 \approx c_4$
		05 , 5 04

$$c \leq d \wedge d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0,c))}_{c_1} \wedge P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \wedge \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	\mathcal{E}
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 \approx h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
$c_{\cdot} \sim c_{-}$	$c_{\cdot} \sim c_{-}$	cpprox d
$c_1 \approx c_5$	$c_1 \approx c_5$	$c \approx a$
c pprox d		$c_3 \approx c_4$
$c_2 \approx c_5$		\perp

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$: where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$: where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

not problematic; requires linear time

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions

Implementation

 ϕ conjunction of literals

- **Step 1.** Purification: $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$, where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .
- **Step 2.** Propagation: The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

- **Guessing:** guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_i \cup \phi_i$ consistency.
- **Backtracking:** identify disjunction of equalities between shared variables entailed by $\mathcal{T}_i \cup \phi_i$; make case split by adding some of these equalities to ϕ_1, ϕ_2 . Repeat as long as possible.

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers "unsatisfiable" then ϕ is unsatisfiable

Completeness: Under additional hypotheses

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

 ${\mathcal T}$ is stably infinite iff for every quantifier-free formula ϕ

 ϕ satisfiable in $\mathcal T$ iff ϕ satisfiable in an infinite model of $\mathcal T$.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_1 , ϕ_2

R equiv. relation assoc. with partition of $C \mapsto ar(C, R) = \bigwedge_{R(c,d)} c \approx d \land \bigwedge_{\neg R(c,d)} c \not\approx d$

Lemma. Assume that there exists a partition of C s.t. $\phi_i \wedge ar(C, R)$ is \mathcal{T}_i -satisfiable. Then $\phi_1 \wedge \phi_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiable.

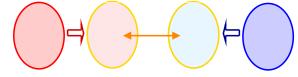
Idea of proof: Let $A_i \in Mod(\mathcal{T}_i)$ s.t. $A_i \models \phi_i \land ar(C, R)$. Then $c_{A_1} = d_{A_1}$ iff $c_{A_2} = d_{A_2}$.

Let $i: \{c_{A_1} \mid c \in C\} \rightarrow \{c_{A_2} \mid c \in C\}$, $i(c_{A_1}) = c_{A_2}$ well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A_1 , A_2 have the same cardinality

Let $h: \mathcal{A}_1 \to \mathcal{A}_2$ bijection s.t. $h(c_{A_1}) = c_{A_2}$

Use h to transfer the Σ_1 -structure on \mathcal{A}_2 .



Theorem. If \mathcal{T}_1 , \mathcal{T}_2 are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from \mathcal{T}_1 , \mathcal{T}_2 to $\mathcal{T}_1 \cup \mathcal{T}_2$.

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation
 - (a) decide whether there is a disjunction of equalities between variables
 - (b) investigate different branches corresponding to disjunctions

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation

 \mathcal{T} is convex iff for every quantifier-free conjunctive formula ϕ , $\phi \models \bigvee_i x_i \approx y_i$ implies $\phi \models x_j \approx y_j$ for some j.

 \mapsto No branching

Main sources of complexity:

- (i) transformation of the formula in DNF
- (ii) propagation

```
\mathcal{T} is convex iff for every quantifier-free conjunctive formula \phi, \phi \models \bigvee_i x_i \approx y_i implies \phi \models x_j \approx y_j for some j.
```

 \mapsto No branching

Examples of convex theories:

- The theory of uninterpreted function symbols
- LI(ℚ)

Examples of theories which are not convex:

• $LI(\mathbb{Z})$

Theorem. Let \mathcal{T}_1 and \mathcal{T}_2 be convex and stably infinite; $\Sigma_1 \cap \Sigma_2 = \emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_i is in PTIME
Then satisfiability of conjunctions of literals in $\mathcal{T}_1 \cup \mathcal{T}_2$ is in PTIME

In general: non-deterministic procedure

Theorem. Let \mathcal{T}_1 and \mathcal{T}_2 be convex and stably infinite; $\Sigma_1 \cap \Sigma_2 = \emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_i is in NP
Then satisfiability of conjunctions of literals in $\mathcal{T}_1 \cup \mathcal{T}_2$ is in NP

From conjunctions to arbitrary combinations

Until now:

check satisfiability for conjunctions of literals

Question:

how to check satisfiability of sets of clauses?

Overview

- Propositional logic
 - resolution
 - DPLL

- First-order logic
 - resolution

Satisfiability w.r.t. theories

- Ground formulae
 - conjunctions of literals:specialized methods
 - clauses: $DPLL(T) \Leftarrow TODAY$

- Formulae with quantifiers
 - reduction to SAT for ground formulae instantiation

 NEXT WEEK (situations when sound and complete)
 - resolution (mod T)

3.6 The $DPLL(\mathcal{T})$ algorithm

Reminder: Propositional SAT

The DPLL algorithm

A succinct formulation

```
State: M||F|, where:

- M partial assignment (sequence of literals),

some literals are annotated (L^d: decision literal)

- F clause set.
```

A succinct formulation

UnitPropagation

$$M||F,C\vee L\Rightarrow M,L||F,C\vee L$$
 if $M\models \neg C$, and L undef. in M

Decide

$$M||F \Rightarrow M, L^d||F$$

if L or $\neg L$ occurs in F, L undef. in M

Fail

$$M||F, C \Rightarrow Fail$$

if $M \models \neg C$, M contains no decision literals

Backjump

$$M$$
, L^d , $N||F \Rightarrow M$, $L'||F$

if
$$\begin{cases} \text{ there is some clause } C \lor L' \text{ s.t.:} \\ F \models C \lor L', M \models \neg C, \\ L' \text{ undefined in } M \\ L' \text{ or } \neg L' \text{ occurs in } F. \end{cases}$$

Example

Assignment:	Clause set:	
Ø	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
P_1^d	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1^d P_2$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1^d P_2 P_3^d$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1^d P_2 P_3^d P_4$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1^d P_2 P_3^d P_4 P_5^d$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1^d P_2 P_3^d P_4 P_5^d \neg P_6$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Backtrack)
$P_1^d P_2 P_3^d P_4 \neg P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	

DPLL with learning

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn

 $M||F \Rightarrow M||F$, C if all atoms of C occur in F and $F \models C$

Forget

$$M||F,C\Rightarrow M||F \text{ if } F\models C$$

In these two rules, the clause C is said to be learned and forgotten, respectively.

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

 Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

Example 1: \mathcal{T} is Equality with Uninterpreted Functions (UIF):

$$f(g(a)) \not\approx f(c) \vee g(a) \approx d$$
, $g(a) \approx c$, $c \not\approx d$

Example 2: for combined theories:

$$A \approx \operatorname{write}(B, a+1, 4), \quad \operatorname{read}(A, b+3) \approx 2 \lor f(a-1) \not\approx f(b+1)$$

The "very eager" approach to SMT

Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?
 Search uses all theory information from the beginning
- Characteristics:
 - + Can use best available SAT solver
 - Sophisticated encodings are needed for each theory
 - Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of \mathcal{T} -literals

"Lazy" approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

$$\underbrace{f(g(a)) \not\approx f(c)}_{\neg P_1} \lor \underbrace{g(a) \approx d}_{P_2}, \quad \underbrace{g(a) \approx c}_{P_3}, \quad \underbrace{c \not\approx d}_{\neg P_4}$$

- 1. Send $\{\neg P_1 \lor P_2, P_3, \neg P_4\}$ to SAT solver
 - SAT solver returns model $[\neg P_1, P_3, \neg P_4]$ Theory solver says $\neg P_1 \land P_3 \land \neg P_4$ is \mathcal{T} -inconsistent
- 2. Send $\{\neg P_1 \lor P_2, P_3, \neg P_4, P_1 \lor \neg P_3 \lor P_4\}$ to SAT solver SAT solver returns model $[P_1, P_2, P_3, \neg P_4]$ Theory solver says $P_1 \land P_2 \land P_3 \land \neg P_4$ is \mathcal{T} -inconsistent
- 3. Send $\{\neg P_1 \lor P_2, P_3, \neg P_4, P_1 \lor \neg P_3 \lor P_4, \neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4\}$ to SAT solver SAT solver says UNSAT

Optimized lazy approach

OLA

LA • Check T-consistency only of full propositional models

OLA • Check T-consistency of partial assignment while being built

LA • Given a T-inconsistent assignment M, add $\neg M$ as a clause

OLA • Given a T-inconsistent assignment M, find an explanation
 (a small T-inconsistent subset of M) and add it as a clause

LA • Upon a T-inconsistency, add clause and restart

 Upon a T-inconsistency, do conflict analysis of the explanation and Backjump

"Lazy" approaches to SMT

• Why "lazy"?

Theory information used only lazily, when checking \mathcal{T} -consistency of propositional models

• Characteristics:

- + Modular and flexible
- Theory information does not guide the search (only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...