Decision Procedures for Verification

Decision Procedures (2)

9.01.2017

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Exam

Possibilities: To be discussed during the class

Doodle (in the next days)

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems: Check satisfiability

Until now:

Normal Forms

Herbrand Models

Resolution

- Soundness, refutational completeness, refinements
- Consequences: Compactness of FOL; The Löwenheim-Skolem Theorem;
 Craig interpolation

Decidable subclasses of FOL

The Bernays-Schönfinkel class

(definition; decidability;tractable fragment: Horn clauses) The Ackermann class

Decision procedures: generalities

Today

Theory of Uninterpreted Function Symbols:

Congruence closure

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification

 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

1: y := 11: y := 12: if z = x*x*x2: R1 := x*x3: then y := x*x + y3: R2 := R1*x4: endif4: jmpNE(z,R2,6)5: y := R1+1

To prove: (indexes refer to values at line numbers)

 $y_{1} \approx 1 \land [(z_{0} \approx x_{0} * x_{0} \ast x_{0} \land y_{3} \approx x_{0} \ast x_{0} + y_{1}) \lor (z_{0} \not\approx x_{0} \ast x_{0} \ast x_{0} \land y_{3} \approx y_{1})] \land$ $y_{1}' \approx 1 \land R_{1_{2}} \approx x_{0}' \ast x_{0}' \land R_{2_{3}} \approx R_{1_{2}} \ast x_{0}' \land$ $\land [(z_{0}' \approx R_{2_{3}} \land y_{5}' \approx R_{1_{2}} + 1) \lor (z_{0}' \neq R_{2_{3}} \land y_{5}' \approx y_{1}')] \land$ $x_{0} \approx x_{0}' \land y_{0} \approx y_{0}' \land z_{0} \approx z_{0}' \implies x_{0} \approx x_{0}' \land y_{3} \approx y_{5}' \land z_{0} \approx z_{0}'$

(1) **Abstraction**.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma\text{-}\mathsf{alg}$ be the class of all $\Sigma\text{-}\mathsf{structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $Th_{\forall}(\Sigma$ -alg) of all universal formulae which are true in all Σ -algebras.

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $Free(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j t(\overline{x}))$

Solution 1:

The following are equivalent:

(1)
$$(\bigwedge_{i} s_{i} \approx t_{i}) \rightarrow \bigvee_{j} s_{j}' \approx t_{j}'$$
 is valid
(2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_{i} s_{i} \sim t_{i}) \wedge (\bigwedge_{j} s_{j}' \not\sim t_{j}')$ is unsatisfiable.
where $Eq(\sim)$: $Refl(\sim) \wedge Sim(\sim) \wedge Trans(\sim)$
 $Con(f): \forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}(\bigwedge x_{i} \sim y_{i} \rightarrow f(x_{1}, \ldots, x_{n}) \sim f(y_{1}, \ldots, y_{n})$

Resolution: inferences between transitivity axioms – nontermination

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x}))$

Solution 2: Ackermann's reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant $c_f \phi \mapsto FLAT(\phi)$

Theorem 3.3.2: The following are equivalent:

(1)
$$(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})$$
 is satisfiable
(2) $FC \land FLAT[(\bigwedge_{i} s_{i}(\overline{c}) \approx t_{i}(\overline{c})) \land \bigwedge_{j} s'_{j}(\overline{c}) \not\approx t'_{j}(\overline{c})]$ is satisfiable
where $FC = \{c_{1} \approx d_{1}, \ldots, c_{n} \approx d_{n} \rightarrow c_{f} \approx d_{f} \mid \text{ whenever } f(c_{1}, \ldots, c_{n}) \text{ was renamed to } c_{f} \mid f(d_{1}, \ldots, d_{n}) \text{ was renamed to } d_{f}\}$

Note: The problem is decidable in PTIME (see next pages) Problem: Naive handling of transitivity/congruence axiom $\mapsto O(n^3)$ Goal: Give a faster algorithm

Example

The following are equivalent:

- (1) $C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$ is satisfiable
- (2) $FC \wedge FLAT[C]$ is satisfiable, where:

 $FLAT[f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

•
$$FLAT[f(a, b) \approx a \land f(f(a, b), b) \not\approx a] := a_1 \approx a \land a_2 \not\approx a$$

 $f(a, b) = a_1$
 $f(a, b) = a_1$
 $f(a_1, b) = a_2$
• $FC := (a \approx a_1 \rightarrow a_1 \approx a_2)^{a_2}$

Thus, the following are equivalent:

(1)
$$C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$$
 is satisfiable
(2) $(a \approx a_1 \rightarrow a_1 \approx a_2) \wedge a_1 \approx a \wedge a_2 \not\approx a$ is satisfiable
 $FC \qquad FLAT[C]$

Task:

Check if $UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \land \cdots \land s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s'_j(\overline{x}) \approx t'_j(\overline{x}))$

i.e. if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c}))$ unsatisfiable.

Task:

Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land \bigwedge_k s'_k(\overline{c}) \not\approx t'_k(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_1 : f(f(a, b), b)$$

 $v_2 : f(a, b)$
 $v_3 : a$
 $v_3 : b$
 $v_4 : b$

Task: Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \land \cdots \land s_k(\overline{c}) \approx t_k(\overline{c}) \land s(\overline{c}) \not\approx t(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.

$$v_{1} : f(f(a, b), b)$$

$$v_{2} : f(a, b)$$

$$v_{3} : a$$

$$v_{4} : b$$

$$R : \{(v_{2}, v_{3})\}$$

- compute the "congruence closure" R^c of R
- check whether $(v_1, v_3) \in R^c$

Computing the congruence closure of a DAG

Example

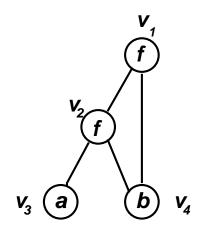
• DAG structures:

. . .

- G = (V, E) directed graph
- Labelling on vertices

 $\lambda(v)$: label of vertex v $\delta(v)$: outdegree of vertex v

Edges leaving the vertex v are ordered
 (v[i]: denotes i-th successor of v)



$$\lambda(v_1) = \lambda(v_2) = f$$
$$\lambda(v_3) = a, \lambda(v_4) = b$$
$$\delta(v_1) = \delta(v_2) = 2$$
$$\delta(v_3) = \delta(v_4) = 0$$
$$v_1[1] = v_2, v_2[2] = v_4$$

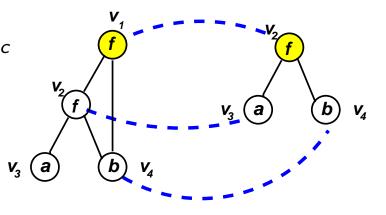
Congruence closure of a DAG/Relation

Given: G = (V, E) DAG + labelling $R \subseteq V \times V$

The congruence closure of R is the smallest relation R^c on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If $\lambda(u) = \lambda(v)$ and $\delta(u) = \delta(v)$ and for all $1 \le i \le \delta(u)$: $(u[i], v[i]) \in R^c$ then $(u, v) \in R^c$.



Congruence closure of a relation

Recursive definition

 $\begin{array}{c} (u,v) \in R \\ \hline (u,v) \in R^{c} \\ \hline (v,v) \in R^{c} \\ \hline (v,u) \in R^{c} \\ \hline \lambda(u) = \lambda(v) \\ u,v \text{ have } n \text{ successors } \text{ and } (u[i],v[i]) \in R^{c} \text{ for all } 1 \leq i \leq n \\ \hline (u,v) \in R^{c} \end{array}$

• The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph *G* and a set *R* of pairs of vertices

• Use \mathbb{A} for checking whether $\bigwedge_{i=1}^{n} s_i \approx t_i \wedge \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$ is satisfiable.

(1) Construct graph corresponding to the terms occurring in s_i , t_i , s'_j , t'_j Let v_t be the vertex corresponding to term t

(2) Let
$$R = \{(v_{s_i}, v_{t_i}) \mid i \in \{1, \ldots, n\}\}$$

- (3) Compute R^c .
- (4) Output "Sat" if $(v_{s'_j}, v_{t'_j}) \notin R^c$ for all $1 \le j \le m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)

$$\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$$

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$

Proof (\Rightarrow)

Assume \mathcal{A} is a Σ -structure such that $\mathcal{A} \models \bigwedge_{i=1}^{n} s_i \approx t_i \land \bigwedge_{j=1}^{m} s'_j \not\approx t'_j$.

We can show that $[v_s]_{R^c} = [v_t]_{R^c}$ implies that $\mathcal{A} \models s = t$ (Exercise).

(We use the fact that if $[v_s]_{R^c} = [v_t]_{R^c}$ then there is a derivation for $(v_s, v_t) \in R^c$ in the calculus defined before; use induction on length of derivation to show that $\mathcal{A} \models s = t$.)

As
$$\mathcal{A} \models s'_j \not\approx t'_j$$
, it follows that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^{n} s_{i} \approx t_{i} \land \bigwedge_{j=1}^{m} s_{j}^{\prime} \approx t_{j}^{\prime} \text{ is satisfiable iff } [v_{s_{j}^{\prime}}]_{R^{c}} \neq [v_{t_{j}^{\prime}}]_{R^{c}} \text{ for all } 1 \leq j \leq m.$

Proof(\Leftarrow) Assume that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s'_j \not\approx t'_j$

• Universe is quotient of V w.r.t. R^c plus new element 0.

•
$$c \operatorname{constant} \mapsto c_{\mathcal{A}} = [v_c]_{R^c}$$
.
• $f/n \mapsto f_{\mathcal{A}}([v_1]_{R^c}, \dots, [v_n]_{R^c}) = \begin{cases} [v_{f(t_1,\dots,t_n)}]_{R^c} & \text{if } v_{f(t_1,\dots,t_n)} \in V, \\ [v_{t_i}]_{R^c} = [v_i]_{R^c} \text{ for } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$

well-defined because R^c is a congruence.

• It holds that $\mathcal{A} \models s'_j \not\approx t'_j$ and $\mathcal{A} \models s_i \approx t_i$

Computing the congruence closure of a DAG

We will show how to algorithmically determine R^c next time.