
Decision Procedures for Verification

Decision Procedures (3)

12.01.2017

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now:

Decision Procedures

• Uninterpreted functions

congruence closure

2

DAG Representation/Congruence Closure

Task: Check if (s1(c)≈t1(c)∧ · · · ∧ sk (c)≈tk (c)∧ s(c)6≈t(c)) unsatisfiable.

Solution [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

- represent the terms occurring in the problem as DAG’s

- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether f (f (a, b), b) ≈ a is a consequence of f (a, b) ≈ a.

2v
f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

- compute the “congruence closure” Rc of R

- check whether (v1, v3) ∈ Rc

3

Computing the congruence closure of a DAG

• DAG structures:

- G = (V ,E) directed graph

- Labelling on vertices

λ(v): label of vertex v

δ(v): outdegree of vertex v

- Edges leaving the vertex v are ordered

(v [i]: denotes i-th successor of v)

Example

2v
f

f

ba

v
1

3v 4v

λ(v1) = λ(v2) = f

λ(v3) = a,λ(v4) = b

δ(v1) = δ(v2) = 2

δ(v3) = δ(v4) = 0

v1[1] = v2, v2[2] = v4

...

4

Congruence closure of a DAG/Relation

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

The congruence closure of R is the smallest relation Rc on V which is:

• reflexive

• symmetric

• transitive

• congruence:

If λ(u) = λ(v) and δ(u) = δ(v)

and for all 1 ≤ i ≤ δ(u): (u[i], v [i]) ∈ Rc

then (u, v) ∈ Rc . 2v

2v
f

ba3v 4v

f

v
1

f

ba3v 4v

5

Congruence closure of a relation

Recursive definition

(u, v) ∈ R

(u, v) ∈ Rc

(v , v) ∈ Rc

(u, v) ∈ Rc

(v , u) ∈ Rc

(u, v) ∈ Rc (v ,w) ∈ Rc

(u,w) ∈ Rc

λ(u) = λ(v) u, v have n successors and (u[i], v [i]) ∈ Rc for all 1 ≤ i ≤ n

(u, v) ∈ Rc

• The congruence closure of R is the smallest set closed under these rules

6

Congruence closure and UIF

Assume that we have an algorithm A for computing the congruence

closure of a graph G and a set R of pairs of vertices

• Use A for checking whether
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j is satisfiable.

(1) Construct graph corresponding to the terms occurring in si , ti , s
′

j , t
′

j

Let vt be the vertex corresponding to term t

(2) Let R = {(vsi , vti) | i ∈ {1, . . . , n}}

(3) Compute Rc .

(4) Output “Sat” if (vs′
j
, vt′

j
) 6∈ Rc for all 1 ≤ j ≤ m, otherwise “Unsat”

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

7

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof (⇒)

Assume A is a Σ-structure such that A |=
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j .

We can show that [vs]Rc = [vt]Rc implies that A |= s = t (Exercise).

(We use the fact that if [vs]Rc = [vt]Rc then there is a derivation for

(vs , vt) ∈ Rc in the calculus defined before; use induction on length of

derivation to show that A |= s = t.)

As A |= s′j 6≈ t′j , it follows that [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

8

Congruence closure and UIF

Theorem 3.3.3 (Correctness)
∧n

i=1 si≈ti ∧
∧m

j=1 s
′

j 6≈t′j is satisfiable iff [vs′
j
]Rc 6=[vt′

j
]Rc for all 1≤j≤m.

Proof(⇐) Assume that [vs′
j
]Rc 6= [vt′

j
]Rc for all 1 ≤ j ≤ m. We construct a

structure that satisfies
∧n

i=1 si ≈ ti ∧
∧m

j=1 s
′

j 6≈ t′j

• Universe is quotient of V w.r.t. Rc plus new element 0.

• c constant 7→ cA = [vc]Rc .

• f /n 7→ fA([v1]Rc , . . . , [vn]Rc) =

[vf (t1,...,tn)]Rc if vf (t1,...,tn) ∈ V ,

[vti]Rc = [vi]Rc for 1≤i≤n

0 otherwise

well-defined because Rc is a congruence.

• It holds that A |= s′j 6≈ t′j and A |= si ≈ ti

9

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Compute Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

10

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V ; (v , v ′) ∈ V 2

Task: Check whether (v , v ′) ∈ Rc

Example:

f (a, b) ≈ a → f (f (a, b), b) ≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task: Decide whether (v1, v3) ∈ Rc

Idea:

- Start with the identity relation Rc = Id

- Successively add new pairs of nodes to Rc ;

close relation under congruence.

11

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

- Congruence relation 7→ corresponding partition

12

Computing the congruence closure of a DAG

Given: G = (V ,E) DAG + labelling

R ⊆ V × V

Task: Compute Rc (the congruence closure of R)

Idea: Recursively construct relations closed under congruence Ri

(approximating Rc) by identifying congruent vertices u, v and

computing Ri+1 := congruence closure of Ri ∪ {(u, v)}.

Representation:

u

vFind(t)

t

- Congruence relation 7→ corresponding partition

- Use procedures which operate on the partition:

FIND(u): unique name of equivalence class of u

UNION(u, v) combines equivalence classes of u, v

finds repr. tu , tv of equiv.cl. of u, v ; sets FIND(u) to t

13

Computing the congruence closure of a DAG

MERGE(u, v) Input: G = (V , E) DAG + labelling

R relation on V closed under congruence

g u, v ∈ V

Output: the congruence closure of R ∪ {(u, v)}

If FIND(u) = FIND(v) [same canonical representative] then Return

If FIND(u) 6= FIND(v) then [merge u, v ; recursively-predecessors]

Pu := set of all predecessors of vertices w with FIND(w) = FIND(u)

Pv := set of all predecessors of vertices w with FIND(w) = FIND(v)

Call UNION(u, v) [merge congruence classes]

For all (x , y) ∈ Pu × Pv do: [merge congruent predecessors]

if FIND(x) 6= FIND(y) and CONGRUENT(x , y) then MERGE(x , y)

u

v

CONGRUENT(x , y)

if λ(x) 6= λ(y) then Return FALSE

For 1 ≤ i ≤ δ(x) if FIND(x[i]) 6= FIND(y [i]) then Return FALSE

Return TRUE.

14

Correctness
Proof:

(1) Returned equivalence relation is not too coarse

If x , y merged then (x , y) ∈ (R ∪ {(u, v)})c

(UNION only on initial pair and on congruent pairs)

(2) Returned equivalence relation is not too fine

If x , y vertices s.t. (x , y) ∈ (R ∪ {(u, v)})c then they are merged by the algorithm.

Induction of length of derivation of (x , y) from (R ∪ {(u, v)})c

(1) (x , y) ∈ R OK (they are merged)

(2) (x , y) 6∈ R. The only non-trivial case is the following:

λ(x) = λ(y), x , y have n successors xi , yi where

(xi , yi) ∈ (R ∪ {(u, v)})c for all 1 ≤ i ≤ b.

Induction hypothesis: (xi , yi) are merged at some point

(become equal during some call of UNION(a, b), made in some MERGE(a, b))

Successor of x equivalent to a (or b) before this call of UNION; same for y .

⇒ MERGE must merge x and y

15

Computing the Congruence Closure

Let G = (V ,E) graph and R ⊆ V × V

CC(G ,R) computes the Rc :

(1) R0 := ∅; i := 1

(2) while R contains ”fresh” elements do:

pick ”fresh” element (u, v) ∈ R

Ri := MERGE(u, v) for G and Ri−1; i := i + 1.

Complexity: O(n2)

Downey-Sethi-Tarjan congruence closure algorithm:

more sophisticated version of MERGE (complexity O(n · logn))

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on

congruence closure. Journal of the ACM, 27(2):356-364, 1980.

16

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

F = s1 ≈ t1 ∧ · · · ∧ sn ≈ tn ∧ s′1 6≈ t′1 ∧ · · · ∧ s′m 6≈ t′m

Solution: Let SF be the set of all subterms occurring in F

1. Construct the DAG for SF ; R0 = Id

2. [Build Rn the congruence closure of {(v(s1), v(t1)), . . . , (v(sn), v(tn))}]

For i ∈ {1, . . . , n} do Ri := MERGE(vsi , vti) w.r.t. Ri−1

3. If FIND(vs′
j
) = FIND(vt′

j
) for some j ∈ {1, . . . ,m} then return unsatisfiable

4. else [if FIND(vs′
j
) 6= FIND(vt′

j
) for all j ∈ {1, . . . ,m}] then return satisfiable

17

Example

f (a, b) ≈ a → f (f (a, b), b) ≈ a

Test: unsatisfiability of

f (a, b) ≈ a ∧ f (f (a, b), b) 6≈ a

2v
f

f

ba

v
1

3v 4v

R={(v2, v3)}

Task:

• Compute Rc

• Decide whether (v1, v3) ∈ Rc

Solution:

1. Construct DAG in the figure; R0 = Id .

2. Compute R1 := MERGE((v2, v3)

[Test representatives]

FIND(v2) = v2 6= v3 = FIND(v3)

Pv2
:= {v1};Pv3

:= {v2}

[Merge congruence classes]

UNION(v2, v3): sets FIND(v2) to v3.

[Compute and recursively merge predecessors]

Test: FIND(v1) = v1 6= v3 = FIND(v2)

CONGR(v1, v2)

MERGE(v1, v2): (different representatives)

calls UNION(v1, v2) which

sets FIND(v1) to v3.

3. Test whether FIND(v1) = FIND(v3). Yes.

Return unsatisfiable.

18

