Decision Procedures for Verification

Decision Procedures (4)

16.01.2017

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now:

Decision Procedures

- Uninterpreted functions
 - congruence closure

3.4. Decision procedures for numeric domains

- Peano arithmetic
- Theory of real numbers
- Linear arithmetic
 - over \mathbb{N}/\mathbb{Z}
 - over \mathbb{R}/\mathbb{Q}

Decision procedures

- Light-weight fragments of linear arithmetic: Difference logic
- Full fragment $(LI(\mathbb{R}) \text{ or } LI(\mathbb{Q})$

Peano arithmetic

Peano axioms:
$$\forall x \neg (x + 1 \approx 0)$$
(zero) $\forall x \forall y (x + 1 \approx y + 1 \rightarrow x \approx y)$ (successor) $F[0] \land (\forall x (F[x] \rightarrow F[x + 1]) \rightarrow \forall x F[x])$ (induction) $\forall x (x + 0 \approx x)$ (plus zero) $\forall x, y (x + (y + 1) \approx (x + y) + 1)$ (plus successor) $\forall x, y (x * 0 \approx 0)$ (times 0) $\forall x, y (x * (y + 1) \approx x * y + x)$ (times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: (\mathbb{N} , {0, 1, +, *}, {<}) (also with \approx)

(does not capture true arithmetic by Goedel's incompleteness theorem) Undecidable

Theory of integers

•Th((
$$\mathbb{Z}, \{0, 1, +, *\}, \{<\})$$
)

Undecidable

Theory of real closed fields (real closed fields: fields with same properties as real numbers)

Axioms:

- the ordered field axioms;
- axiom asserting that every positive number has a square root; and
- an axiom scheme asserting that all polynomials of odd order have at least one real root.

Tarski (1951) proved that the theory of real closed fields, including the binary predicate symbols "=", " \neq ", and "<", and the operations of addition and multiplication, admits elimination of quantifiers, which implies that it is a complete and decidable theory.

Linear arithmetic

Syntax

- Signature $\Sigma = (\{0/0, s/1, +/2\}, \{</2\})$
- Terms, atomic formulae as usual

Example: $3 * x_1 + 2 * x_2 \le 5 * x_3$ abbreviation for

$$(x_1 + x_1 + x_1) + (x_2 + x_2) \le (x_3 + x_3 + x_3 + x_3 + x_3)$$

There are several ways to define linear arithmetic.

We need at least the following signature: $\Sigma = (\{0/0, 1/0, +/2\}, \{</2\})$ and the predefined binary predicate \approx .

There are several ways to define linear arithmetic.

We need at least the following signature: $\Sigma = (\{0/0, 1/0, +/2\}, \{</2\})$ and the predefined binary predicate \approx .

Linear arithmetic over \mathbb{N}/\mathbb{Z}

Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, <)$ the standard interpretation of integers. Axiomatization

Linear arithmetic over \mathbb{Q}/\mathbb{R}

Th(\mathbb{R}) $\mathbb{R} = (\mathbb{R}, \{0, 1, +\}, \{<\})$ the standard interpretation of reals;

Th(\mathbb{Q}) $\mathbb{Q} = (\mathbb{Q}, \{0, 1, +\}, \{<\})$ the standard interpretation of rationals.

Axiomatization

Outline

We first present an efficient method for checking the satisfiability of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking the satisfiability of arbitrary formulae in linear arithmetic.

Simple fragments of linear arithmetic

• Difference logic

check satisfiability of conjunctions of constraints of the form

$$x-y \leq c$$

• UTVPI (unit, two variables per inequality)

check satisfiability of conjunctions of constraints of the form

 $ax + by \le c$, where $a, b \in \{-1, 0, 1\}$

Application: Program Verification

Task: Check whether $i \leq s$ always during the execution of this program.

Application: Program Verification

Task: Check whether $i \le s$ always during the execution of this program. **Solution:** Show that this is true at the beginning and remains true after every update of *i*.

Application: Program Verification

Task: Check whether $i \leq s$ always during the execution of this program.

Solution: Show that $i \leq s$ is an invariant of the program:

1) It holds at the first line: $i = 1 \rightarrow i \leq s$

2) It is preserved under the updates in the while loop: $\forall n, m, s, i, i' \quad (1 \le n < m < s \land i < n \land i \le s \land i' \approx i + 1 \rightarrow i' \le s)$

Positive difference logic

Syntax

The syntax of formulae in **positive** difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

 $x-y \leq c$

where x, y are variables and c is a numerical constant.

• The set of formulae is:

F, G, H::=A(atomic formula)| $(F \land G)$ (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is \mathbb{Q} or resp. \mathbb{Z} .

A decision procedure for positive difference logic (\leq only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. G(S) = (V, E, w), the inequality graph of S, is a weighted graph with:

- V = X(S), the set of variables occurring in S
- $e = (x, y) \in E$ with w(e) = c iff $x y \leq c \in S$

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot |E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Rightarrow) Assume S satisfiable. Let $\beta : X \to \mathbb{Z}$ satisfying assignment. Let $v_1 \stackrel{c_{12}}{\to} v_2 \stackrel{c_{23}}{\to} \cdots \stackrel{c_{n-1,n}}{\to} v_n \stackrel{c_{n1}}{\to} v_1$ be a cycle in G(S).

Then:
$$\beta(v_1) - \beta(v_2) \leq c_{12}$$

 $\beta(v_2) - \beta(v_3) \leq c_{23}$
 \dots
 $\beta(v_n) - \beta(v_1) \leq c_{n1}$
 $0 = \beta(v_1) - \beta(v_1) \leq \sum_{i=1}^{n-1} c_{i,i+1} + c_{n1}$

Thus, for satisfiability it is necessary that all cycles are positive.

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (\Leftarrow) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s. (This does not introduce negative cycles.)

Let δ_{uv} denote the minimal weight of the paths from u to v.

- $\delta_{uv} = \infty$ if there is no path from u to v.
- well-defined since there are no negative cycles

Define $\beta: V \to \mathbb{Z}$ by $\beta(v) = \delta_{vs}$. Claim: β satisfying assignment for S.

Let $x - y \le c \in S$. Consider the shortest paths from x to s and from y to s. By the triangle inequality, $\delta_{xs} \le c + \delta_{ys}$, i.e. $\beta(x) - \beta(y) \le c$.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < -c.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < c.

Satisfiability over $\ensuremath{\mathbb{Z}}$

y - x < c iff $y - x \leq c - 1$

Natural reduction to positive difference logic.

Syntax

• Atomic formulae (difference constraints): $x - y \leq c$

where x, y are variables and c is a numerical constant.

• Formulae: F, G, H ::= A (atomic formula) $| \neg A$ $| (F \land G)$ (conjunction)

Note: $\neg(x - y \le c)$ is equivalent to y - x < c.

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and G(S) the inequality graph of S. Then S is satisfiable iff there is no negative cycle in G(S).

Proof:

Need to extend the graph construction and the unsatisfiability condition:

 $x_1 - x_2 \prec_1 c_1, \ldots, x_n - x_1 \prec_n c_n$ unsatisfiable iff

• $\sum_{i=1}^{n} c_i < 0$, or • $\sum_{i=1}^{n} c_i = 0$ and one \prec_i is strict.

Consider pairs (\prec, c) instead of numbers c

- $(\prec, c) <_B (\prec', c')$ iff c < c' or $(c = c', \prec_1 = < and \prec_2 = \leq)$
- $(\prec, c) + (\prec', c') = (\prec'', c + c')$ where $\prec'' = <$ iff \prec or \prec' is <.