
Decision Procedures for Verification

Decision Procedures (4)

16.01.2017

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1



Until now:

Decision Procedures

• Uninterpreted functions

congruence closure

2



3.4. Decision procedures for numeric domains

• Peano arithmetic

• Theory of real numbers

• Linear arithmetic

• over N/Z

• over R/Q

Decision procedures

• Light-weight fragments of linear arithmetic: Difference logic

• Full fragment (LI (R) or LI (Q)

3



Peano arithmetic

Peano axioms: ∀x ¬(x + 1 ≈ 0) (zero)

∀x∀y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (∀x (F [x] → F [x + 1]) → ∀xF [x]) (induction)

∀x (x + 0 ≈ x) (plus zero)

∀x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

∀x , y (x ∗ 0 ≈ 0) (times 0)

∀x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as ∃z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {<}) (also with ≈)

(does not capture true arithmetic by Goedel’s incompleteness theorem)

Undecidable

4



Theory of integers

•Th((Z, {0, 1,+, ∗}, {<}))

Undecidable

5



Theory of real numbers

Theory of real closed fields (real closed fields: fields with same

properties as real numbers)

Axioms:

• the ordered field axioms;

• axiom asserting that every positive number has a square root; and

• an axiom scheme asserting that all polynomials of odd order have at

least one real root.

Tarski (1951) proved that the theory of real closed fields, including

the binary predicate symbols ”=”, ” 6=”, and ”<”, and the operations

of addition and multiplication, admits elimination of quantifiers,

which implies that it is a complete and decidable theory.

6



Linear arithmetic

Syntax

• Signature Σ = ({0/0, s/1,+/2}, {< /2})

• Terms, atomic formulae – as usual

Example: 3 ∗ x1 + 2 ∗ x2 ≤ 5 ∗ x3 abbreviation for

(x1 + x1 + x1) + (x2 + x2) ≤ (x3 + x3 + x3 + x3 + x3)

7



Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

8



Linear arithmetic

There are several ways to define linear arithmetic.

We need at least the following signature: Σ = ({0/0, 1/0,+/2}, {< /2})

and the predefined binary predicate ≈.

Linear arithmetic over N/Z

Th(Z+) Z+ = (Z, 0, s, +,<) the standard interpretation of integers.

Axiomatization

Linear arithmetic over Q/R

Th(R) R = (R, {0, 1,+}, {<}) the standard interpretation of reals;

Th(Q) Q = (Q, {0, 1,+}, {<}) the standard interpretation of rationals.

Axiomatization

9



Outline

We first present an efficient method for checking the satisfiability

of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking

the satisfiability of arbitrary formulae in linear arithmetic.

10



Simple fragments of linear arithmetic

• Difference logic

check satisfiability of conjunctions of constraints of the form

x − y ≤ c

• UTVPI (unit, two variables per inequality)

check satisfiability of conjunctions of constraints of the form

ax + by ≤ c, where a, b ∈ {−1, 0, 1}

11



Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

12



Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

Solution: Show that this is true at the beginning and remains true after

every update of i .

13



Application: Program Verification

i := 1; [** where 1 <= n < m **]

while i < n

do

i := i + 1;

[** part of a program in which i is used as an index in an array

which was declared to be of size s > m (and i is not changed)

**]

...

od

Task: Check whether i ≤ s always during the execution of this program.

Solution: Show that i ≤ s is an invariant of the program:

1) It holds at the first line: i = 1 → i ≤ s

2) It is preserved under the updates in the while loop:

∀n,m, s, i , i ′ (1 ≤ n < m < s ∧ i < n ∧ i ≤ s ∧ i ′ ≈ i + 1 → i ′ ≤ s)

14



Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

• Atomic formulae (also called difference constraints) are of the form:

x − y ≤ c

where x , y are variables and c is a numerical constant.

• The set of formulae is:

F ,G ,H ::= A (atomic formula)

| (F ∧ G) (conjunction)

Semantics:

Versions of difference logic exist, where the standard interpretation is Q or

resp. Z.

15



Positive difference logic

A decision procedure for positive difference logic (≤ only)

Let S be a set (i.e. conjunction) of atoms in (positive) difference logic.

G(S) = (V ,E ,w), the inequality graph of S , is a weighted graph with:

• V = X (S), the set of variables occurring in S

• e = (x , y) ∈ E with w(e) = c iff x − y ≤ c ∈ S

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Searching for negative cycles in a graph can be done with the Bellman-Ford

algorithm for finding the single-source shortest paths in a directed weighted

graph in time O(|V | · |E |). (Side-effect of the algorithm exploited - if there

exists a negative cycle in the graph then the algorithm finds it and aborts.)

16



Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇒) Assume S satisfiable. Let β : X → Z satisfying assignment.

Let v1
c12→ v2

c23→ · · ·
cn−1,n
→ vn

cn1→ v1 be a cycle in G(S).

Then: β(v1)− β(v2) ≤ c12

β(v2)− β(v3) ≤ c23

. . .

β(vn)− β(v1) ≤ cn1

0 = β(v1)− β(v1) ≤
∑n−1

i=1 ci ,i+1 + cn1

Thus, for satisfiability it is necessary that all cycles are positive.

17



Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and G(S) the inequality

graph of S . Then S is satisfiable iff there is no negative cycle in G(S).

Proof: (⇐) Assume that there is no negative cycle.

Add a new vertex s and an 0-weighted edge from every vertex in V to s.

(This does not introduce negative cycles.)

Let δuv denote the minimal weight of the paths from u to v .

• δuv = ∞ if there is no path from u to v .

• well-defined since there are no negative cycles

Define β : V → Z by β(v) = δvs . Claim: β satisfying assignment for S .

Let x − y ≤ c ∈ S . Consider the shortest paths from x to s and from y to

s. By the triangle inequality, δxs ≤ c + δys , i.e. β(x)− β(y) ≤ c.

18



Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < −c.

19



Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Satisfiability over Z

y − x < c iff y − x ≤ c − 1

Natural reduction to positive difference logic.

20



Difference logic

Syntax

• Atomic formulae (difference constraints): x − y ≤ c

where x , y are variables and c is a numerical constant.

• Formulae: F ,G ,H ::= A (atomic formula)

| ¬A

| (F ∧ G) (conjunction)

Note: ¬(x − y ≤ c) is equivalent to y − x < c.

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).

21



Difference logic

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and

G(S) the inequality graph of S . Then S is satisfiable iff there is no negative

cycle in G(S).

Proof:

Need to extend the graph construction and the unsatisfiability condition:

x1 − x2 ≺1 c1, . . . , xn − x1 ≺n cn unsatisfiable iff

•
∑n

i=1 ci < 0, or •
∑n

i=1 ci = 0 and one ≺i is strict.

Consider pairs (≺, c) instead of numbers c

• (≺, c) <B (≺′, c′) iff c < c′ or (c = c′, ≺1=< and ≺2=≤)

• (≺, c) + (≺′, c′) = (≺′′, c + c′) where ≺′′=< iff ≺ or ≺′ is <.

22


