Decision Procedures for Verification

Decision Procedures (4)

16.01 .2017

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now:

Decision Procedures

- Uninterpreted functions
congruence closure

3.4. Decision procedures for numeric domains

- Peano arithmetic
- Theory of real numbers
- Linear arithmetic
- over \mathbb{N} / \mathbb{Z}
- over \mathbb{R} / \mathbb{Q}

Decision procedures

- Light-weight fragments of linear arithmetic: Difference logic
- Full fragment $(L I(\mathbb{R})$ or $L I(\mathbb{Q})$

Peano arithmetic

$$
\begin{array}{lrr}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) & \text { (zero) } \tag{zero}\\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
& \forall x(x+0 \approx x) & \text { (plus zero) } \\
& \forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
& \forall x, y(x * 0 \approx 0) & \text { (times 0) } \\
\forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) } \\
3 * y+5>2 * y \text { expressed as } \exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{<\})$ (also with \approx)
(does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable

Theory of integers

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{<\}))$

Undecidable

Theory of real numbers

Theory of real closed fields (real closed fields: fields with same properties as real numbers)

Axioms:

- the ordered field axioms;
- axiom asserting that every positive number has a square root; and
- an axiom scheme asserting that all polynomials of odd order have at least one real root.

Tarski (1951) proved that the theory of real closed fields, including the binary predicate symbols " $=$ ", " \neq ", and " $<$ ", and the operations of addition and multiplication, admits elimination of quantifiers, which implies that it is a complete and decidable theory.

Linear arithmetic

Syntax

- Signature $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{</ 2\})$
- Terms, atomic formulae - as usual

Example: $3 * x_{1}+2 * x_{2} \leq 5 * x_{3}$ abbreviation for

$$
\left(x_{1}+x_{1}+x_{1}\right)+\left(x_{2}+x_{2}\right) \leq\left(x_{3}+x_{3}+x_{3}+x_{3}+x_{3}\right)
$$

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic

There are several ways to define linear arithmetic.
We need at least the following signature: $\Sigma=(\{0 / 0,1 / 0,+/ 2\},\{</ 2\})$ and the predefined binary predicate \approx.

Linear arithmetic over \mathbb{N} / \mathbb{Z}
$\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+,<)$ the standard interpretation of integers.
Axiomatization

Linear arithmetic over \mathbb{Q} / \mathbb{R}
$\operatorname{Th}(\mathbb{R}) \quad \mathbb{R}=(\mathbb{R},\{0,1,+\},\{<\})$ the standard interpretation of reals;
$\operatorname{Th}(\mathbb{Q}) \mathbb{Q}=(\mathbb{Q},\{0,1,+\},\{<\})$ the standard interpretation of rationals.
Axiomatization

Outline

We first present an efficient method for checking the satisfiability of formulae in a very simple fragment of linear arithmetic.

We will then give more details about possibilities of checking the satisfiability of arbitrary formulae in linear arithmetic.

Simple fragments of linear arithmetic

- Difference logic
check satisfiability of conjunctions of constraints of the form

$$
x-y \leq c
$$

- UTVPI (unit, two variables per inequality)
check satisfiability of conjunctions of constraints of the form

$$
a x+b y \leq c, \text { where } a, b \in\{-1,0,1\}
$$

Application: Program Verification

```
i := 1;
    [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.

Application: Program Verification

```
i := 1; [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.
Solution: Show that this is true at the beginning and remains true after every update of i.

Application: Program Verification

```
i := 1;
    [** where 1 <= n < m **]
while i < n
do
    i := i + 1;
    [** part of a program in which i is used as an index in an array
        which was declared to be of size s > m (and i is not changed)
    **]
od
```

Task: Check whether $i \leq s$ always during the execution of this program.
Solution: Show that $i \leq s$ is an invariant of the program:

1) It holds at the first line: $i=1 \rightarrow i \leq s$
2) It is preserved under the updates in the while loop:
$\forall n, m, s, i, i^{\prime} \quad\left(1 \leq n<m<s \wedge i<n \wedge i \leq s \wedge i^{\prime} \approx i+1 \rightarrow i^{\prime} \leq s\right)$

Positive difference logic

Syntax

The syntax of formulae in positive difference logic is defined as follows:

- Atomic formulae (also called difference constraints) are of the form:

$$
x-y \leq c
$$

where x, y are variables and c is a numerical constant.

- The set of formulae is:

$$
\begin{array}{rlrr}
F, G, H & ::= & A & \text { (atomic formula) } \\
& \mid & (F \wedge G) & \text { (conjunction) }
\end{array}
$$

Semantics:
Versions of difference logic exist, where the standard interpretation is \mathbb{Q} or resp. \mathbb{Z}.

Positive difference logic

A decision procedure for positive difference logic (\leq only)
Let S be a set (i.e. conjunction) of atoms in (positive) difference logic. $G(S)=(V, E, w)$, the inequality graph of S, is a weighted graph with:

- $V=X(S)$, the set of variables occurring in S
- $e=(x, y) \in E$ with $w(e)=c$ iff $x-y \leq c \in S$

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Searching for negative cycles in a graph can be done with the Bellman-Ford algorithm for finding the single-source shortest paths in a directed weighted graph in time $O(|V| \cdot|E|)$. (Side-effect of the algorithm exploited - if there exists a negative cycle in the graph then the algorithm finds it and aborts.)

Positive difference logic

Theorem 3.4.1.
Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof: (\Rightarrow) Assume S satisfiable. Let $\beta: X \rightarrow \mathbb{Z}$ satisfying assignment. Let $v_{1} \xrightarrow{c_{12}} v_{2} \xrightarrow{c_{23}} \ldots \xrightarrow{c_{n} 1, n} v_{n} \xrightarrow{c_{n 1}} v_{1}$ be a cycle in $G(S)$.

Then: $\beta\left(v_{1}\right)-\beta\left(v_{2}\right) \leq c_{12}$

$$
\beta\left(v_{2}\right)-\beta\left(v_{3}\right) \leq c_{23}
$$

$$
0=\frac{\beta\left(v_{n}\right)-\beta\left(v_{1}\right) \leq c_{n 1}}{\beta\left(v_{1}\right)-\beta\left(v_{1}\right) \leq \sum_{i=1}^{n-1} c_{i, i+1}+c_{n 1}}
$$

Thus, for satisfiability it is necessary that all cycles are positive.

Positive difference logic

Theorem 3.4.1.

Let S be a conjunction of difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof: (\Leftarrow) Assume that there is no negative cycle.
Add a new vertex s and an 0 -weighted edge from every vertex in V to s.
(This does not introduce negative cycles.)
Let $\delta_{u v}$ denote the minimal weight of the paths from u to v.

- $\delta_{u v}=\infty$ if there is no path from u to v.
- well-defined since there are no negative cycles

Define $\beta: V \rightarrow \mathbb{Z}$ by $\beta(v)=\delta_{v s}$. Claim: β satisfying assignment for S.
Let $x-y \leq c \in S$. Consider the shortest paths from x to s and from y to s. By the triangle inequality, $\delta_{x s} \leq c+\delta_{y s}$, i.e. $\beta(x)-\beta(y) \leq c$.

Difference logic

Syntax

- Atomic formulae (difference constraints): $x-y \leq c$ where x, y are variables and c is a numerical constant.
- Formulae: $\begin{array}{rlll} & F, G, H & ::= & A \\ & & & \text { (atomic formula) } \\ & & \neg A & \\ & & & (F \wedge G) \\ & & \text { (conjunction) }\end{array}$

Note: $\neg(x-y \leq c)$ is equivalent to $y-x<-c$.

Difference logic

Syntax

- Atomic formulae (difference constraints): $x-y \leq c$ where x, y are variables and c is a numerical constant.
$\begin{array}{rllr}\text { - Formulae: } & F, G, H \quad:: & A & \text { (atomic formula) } \\ & \mid & \neg A & \\ & \mid & (F \wedge G) & \text { (conjunction) }\end{array}$

Note: $\neg(x-y \leq c)$ is equivalent to $y-x<c$.

Satisfiability over \mathbb{Z}
$y-x<c$ iff $y-x \leq c-1$
Natural reduction to positive difference logic.

Difference logic

Syntax

- Atomic formulae (difference constraints): $x-y \leq c$ where x, y are variables and c is a numerical constant.
$\begin{array}{rlll}\text { - Formulae: } & F, G, H \quad:= & A & \text { (atomic formula) } \\ & \mid & \neg A & \\ & & & (F \wedge G) \\ & & \text { (conjunction) }\end{array}$

Note: $\neg(x-y \leq c)$ is equivalent to $y-x<c$.
Theorem 3.4.2.
Let S be a conjunction of strict and non-strict difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Difference logic

Theorem 3.4.2.

Let S be a conjunction of strict and non-strict difference constraints, and $G(S)$ the inequality graph of S. Then S is satisfiable iff there is no negative cycle in $G(S)$.

Proof:

Need to extend the graph construction and the unsatisfiability condition:
$x_{1}-x_{2} \prec_{1} c_{1}, \ldots, x_{n}-x_{1} \prec_{n} c_{n}$ unsatisfiable iff

- $\quad \sum_{i=1}^{n} c_{i}<0$, or - $\quad \sum_{i=1}^{n} c_{i}=0$ and one \prec_{i} is strict.

Consider pairs (\prec, c) instead of numbers c

- $(\prec, c)<B\left(\prec^{\prime}, c^{\prime}\right)$ iff $c<c^{\prime}$ or $\left(c=c^{\prime}, \prec_{1}=<\right.$ and $\prec_{2}=\leq$)
- $(\prec, c)+\left(\prec^{\prime}, c^{\prime}\right)=\left(\prec^{\prime \prime}, c+c^{\prime}\right)$ where $\prec^{\prime \prime}=<$ iff \prec or \prec^{\prime} is $<$.

