Decision Procedures for Verification

Decision Procedures (5)

23.01.2017

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now:

Decision Procedures

- Uninterpreted functions congruence closure
- Numerical domains difference logic

- 1. Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, <)$ the standard interpretation of integers.
- 2. Presburger arithmetic.

Axiomatization:

$$\forall x \neg (x+1 \approx 0) \tag{zero}$$

$$\forall x \forall y \, (x+1 \approx y+1 \rightarrow x \approx y \tag{successor})$$

$$F[0] \land (\forall x \, (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) \tag{induction}$$

$$\forall x \, (x+0 \approx x) \tag{plus zero}$$

$$\forall x, y \, (x+(y+1) \approx (x+y)+1) \tag{plus successor}$$

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

automata theoretic method

Linear arithmetic over \mathbb{Z} :

check satisfiability of conjunctions of (in)equalities over \mathbb{Z} : NP-hard

- Integer linear programming
 use branch-and-bound/cutting planes
- The Omega test use variable elimination

- Th(\mathbb{R}) $\mathbb{R} = (\mathbb{R}, \{0, 1, +\}, \{<\})$ the standard interpretation of real numbers;
- Th($\mathbb Q$) $\mathbb Q=(\mathbb Q,\{0,1,+\},\{<\}) \text{ the standard interpretation of rational numbers.}$

Axiomatization:

The equational part of linear rational arithmetic is described by the theory of divisible torsion-free abelian groups:

Note: Quantification over natural numbers is not part of our language. We really need infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible abelian groups:

$$\forall x \ (\neg x < x) \qquad \text{(irreflexivity)}$$

$$\forall x, y, z \ (x < y \land y < z \rightarrow x < z) \qquad \text{(transitivity)}$$

$$\forall x, y \ (x < y \lor y < x \lor x \approx y) \qquad \text{(totality)}$$

$$\forall x, y, z \ (x < y \rightarrow x + z < y + z) \qquad \text{(compatibility)}$$

$$0 < 1 \qquad \text{(non-triviality)}$$

Note: The second non-triviality axiom renders the first one superfluous.

Moreover, as soon as we add the axioms of compatible strict total orderings, torsion-freeness can be omitted.

Every ordered divisible abelian group is obviously torsion-free. In fact the converse holds: Every torsion-free abelian group can be ordered [F.-W. Levi, 1913].

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{Q}^n , \mathbb{R}^n , . . .

The signature can be extended by further symbols:

- $\leq /2, > /2, \geq /2, \not\approx /2$: defined using < and \approx
- -/1: Skolem function for inverse axiom
- -/2: defined using +/2 and -/1
- $\operatorname{div}_n/1$: Skolem functions for divisibility axiom for all $n \geq 1$.
- $\operatorname{mult_n}/1$: defined by $\forall x (\operatorname{mult_n}(x) \approx \underbrace{x + \cdots + x}_{n \text{ times}} \text{ for all } n \geq 1.$
- $\operatorname{mult}_q/1$: defined using mult_n , div_n , for all $q \in \mathbb{Q}$. (We usually write $q \cdot t$ or qt instead of $\operatorname{mult}_q(t)$.)
- q/0 (for $q \in \mathbb{Q}$): defined by $q \approx q \cdot 1$.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over the base signature.

When \cdot is considered as a binary operator, (ordered) divisible torsion-free abelian groups correspond to (ordered) rational vector spaces.

Theorem.

- (1) The satisfiability of any conjunction of (strict and non-strict) linear inequalities can be checked in PTIME [Khakian'79].
- (2) The complexity of checking the satisfiability of sets of clauses in linear arithmetic is in NP [Sonntag'85].

Literature

[Khakian'79] L. Khachian. "A polynomial time algorithm for linear programming." *Soviet Math. Dokl.* 20:191-194, 1979.

[Sonntag'85] E.D. Sontag. "Real addition and the polynomial hierarchy". *Inf. Proc. Letters* 20(3):115-120, 1985.

Methods The algorithms currently used are not PTIME.

- The simplex method
- The Fourier-Motzkin method use variable elimination

Linear rational arithmetic permits quantifier elimination:

every formula $\exists xF$ or $\forall xF$ in linear rational arithmetic can be converted into an equivalent formula without the variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in 1936.

Observation: Every literal over the variables $x, y_1, ..., y_n$ can be converted into an ODAG-equivalent atom $x \sim t[\overline{y}]$ or $0 \sim t[\overline{y}]$, where $\sim \in \{<, >, \leq, \geq, \approx, \not\approx\}$ and $t[\overline{y}]$ has the form $\sum_i q_i \cdot y_i + q_0$.

In other words, we can either eliminate x completely or isolate it on one side of the atom.

Moreover, we can convert every $\not\approx$ atom into an ODAG-equivalent disjunction of two < atoms.

We first consider existentially quantified conjunctions of atoms.

(1) If the conjunction contains an equation $x \approx t[\overline{y}]$, we can eliminate the quantifier $\exists x$ by substitution:

$$\exists x (x \approx t[\overline{y}] \land F)$$

is equivalent to

$$F\sigma$$
, where $\sigma = [t[\overline{y}]/x]$

We first consider existentially quantified conjunctions of atoms.

(2) If \times occurs only in inequations, then:

$$\exists x \quad (\bigwedge_{i} x < s_{i}(\overline{y}) \land \bigwedge_{j} x \leq t_{j}(\overline{y}) \land \\ \bigwedge_{k} x > u_{k}(\overline{y}) \land \bigwedge_{l} x \geq v_{l}(\overline{y}) \land \\ F(\overline{y}))$$

is equivalent to:

Proof: " \Rightarrow " follows by transitivity;

" \leftarrow " Take $\frac{1}{2}$ (min $\{s_i, t_j\}$ + max $\{u_k, v_l\}$) as a witness.

Extension to arbitrary formulas:

- Transform into prenex formula;
- If innermost quantifier is ∃: transform matrix into DNF and move ∃ into disjunction;
- If innermost quantifier is \forall : replace $\forall x F$ by $\neg \exists x \neg F$, then eliminate \exists .

Consequences:

- (1) Every closed formula over the signature of ODAGs is ODAG-equivalent to either \top or \bot .
- (2) ODAGs are a complete theory, i.e., every closed formula over the signature of ODAGs is either valid or unsatisfiable w.r.t. ODAGs.
- (3) Every closed formula over the signature of ODAGs holds either in all ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs. (These properties do not hold for extended signatures!)

Fourier-Motzkin: Complexity

- One FM-step for \exists : formula size grows quadratically, therefore $O(n^2)$ runtime.
- m quantifiers \(\frac{1}{2}\)...\(\frac{1}{2}\):
 naive implementation needs \(O(n^{2^m})\) runtime;
 It is unknown whether optimized implementation with simply exponential runtime is possible.
- m quantifiers ∃∀∃∀...∃∀:
 CNF/DNF conversion (exponential!) required after each step;
 therefore non-elementary runtime.

Fourier-Motzkin: Complexity

- One FM-step for \exists : formula size grows quadratically, therefore $O(n^2)$ runtime.
- m quantifiers \(\frac{1}{2}\)...\(\frac{1}{2}\):
 naive implementation needs \(O(n^{2^m})\) runtime;
 It is unknown whether optimized implementation with simply exponential runtime is possible.
- m quantifiers ∃∀∃∀...∃∀:
 CNF/DNF conversion (exponential!) required after each step;
 therefore non-elementary runtime.

Improvement: Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed by R. Loos and V. Weispfenning (1993).

The method is also known as "test point method" or "virtual substitution method".

For simplicity, we consider only one particular ODAG, namely \mathbb{Q} (as we have seen above, the results are the same for all ODAGs).

Let $F(x, \overline{y})$ be a positive boolean combination of linear (in-)equations of the form $x \sim_i s_i(\overline{y})$ and $0 \sim_j s_j(\overline{y})$ with $\sim_i, \sim_j \in \{\approx, \not\approx, <, \leq, >, \geq\}$, (i.e. a formula built from linear (in-) equations, \vee and \wedge , but without \neg).

Goal: Find a finite set T of "test points" so that

$$\exists x F(x, \overline{y}) \models \bigvee_{t \in T} F(x, \overline{y})[t/x].$$

In other words:

We want to replace the infinite disjunction $\exists x$ by a finite disjunction.

If we keep the values of the variables \overline{y} fixed, we can regard F as a function

$$F: \mathbb{Q} \to \{0, 1\}$$
 defined by $x \mapsto F(x, \overline{y})$

Remarks:

- (1) The value of each of the atoms $s_i(\overline{y}) \sim_i x$ changes only at $s_i(\overline{y})$,
- (2) The value of F can only change if the value of one of its atoms changes.
- (3) F is a piecewise constant function; more precisely: the set of all x with $F(x, \overline{y}) = 1$ is a finite union of intervals.

(The union may be empty, the individual intervals may be finite or infinite and open or closed.)

Let
$$\delta(\overline{y}) = \min\{|s_i(\overline{y}) - s_j(\overline{y})| \mid s_i(\overline{y}) \neq s_j(\overline{y})\}.$$

Each of the intervals has either length 0 (i.e., it consists of one point), or its length is at least $\delta(\overline{y})$.

If the set of all x for which $F(x, \overline{y})$ is 1 is non-empty, then

- (i) $F(x, \overline{y}) = 1$ for all $x \leq r(\overline{y})$ for some $r(\overline{y}) \in \mathbb{Q}$
- (ii) or there is some point where the value of $F(x, \overline{y})$ switches from 0 to 1 when we traverse the real axis from $-\infty$ to $+\infty$.

We use this observation to construct a set of test points.

We start with a "sufficiently small" test point $r(\overline{y})$ to take care of case (i).

For case (ii), we observe that $F(x, \overline{y})$ can only switch from 0 to 1 if one of the atoms switches from 0 to 1. (We consider only positive boolean combinations of atoms and \wedge and \vee are monotonic w.r.t. truth values.)

- $x \leq s_i(\overline{y})$ and $x < s_i(\overline{y})$ do not switch from 0 to 1 when x grows.
- $x \ge s_i(\overline{y})$ and $x \approx s_i(\overline{y})$ switch from 0 to 1 at $s_i(\overline{y})$ $\Rightarrow s_i(\overline{y})$ is a test point.
- $x > s_i(\overline{y})$ and $x \not\approx s_i(\overline{y})$ switch from 0 to 1 "right after" $s_i(\overline{y})$ $\Rightarrow s_i(\overline{y}) + \epsilon$ (for some $0 < \epsilon < \delta(\overline{y})$) is a test point.

We start with a "sufficiently small" test point $r(\overline{y})$ to take care of case (i).

For case (ii), we observe that $F(x, \overline{y})$ can only switch from 0 to 1 if one of the atoms switches from 0 to 1. (We consider only positive boolean combinations of atoms and \wedge and \vee are monotonic w.r.t. truth values.)

- $x \leq s_i(\overline{y})$ and $x < s_i(\overline{y})$ do not switch from 0 to 1 when x grows.
- $x \ge s_i(\overline{y})$ and $x \approx s_i(\overline{y})$ switch from 0 to 1 at $s_i(\overline{y})$ $\Rightarrow s_i(\overline{y})$ is a test point.
- $x > s_i(\overline{y})$ and $x \not\approx s_i(\overline{y})$ switch from 0 to 1 "right after" $s_i(\overline{y})$ $\Rightarrow s_i(\overline{y}) + \epsilon$ (for some $0 < \epsilon < \delta(\overline{y})$) is a test point.

If $r(\overline{y})$ is sufficiently small and $0 < \epsilon < \delta(\overline{y})$, then

$$T:=\{r(\overline{y})\}\cup\{s_i(\overline{y})\mid \sim_i\in\{\geq,\approx\}\}\cup\{s_i(\overline{y})+\epsilon\mid \sim_i\in\{>,\not\approx\}\}.$$

is a set of test points.

Problems:

- (1) We don't know how small $r(\overline{y})$ has to be for case (i).
- (2) We don't know $\delta(\overline{y})$ for case (ii).

Idea: We consider the limits for $r \to -\infty$ and for $\epsilon \to 0$ (but positive), that is, we redefine

$$T := \{-\infty\} \cup \{s_i(\overline{y}) \mid \sim_i \in \{\geq, \approx\}\} \cup \{s_i(\overline{y}) + \epsilon \mid \sim_i \in \{>, \not\approx\}\}.$$

New problem:

How can we eliminate the infinitesimals $-\infty$ and ϵ when we substitute elements of T for x?

Virtual substitution:

$$(x < s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r < s(\overline{y})) = \top$$

$$(x \le s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r \le s(\overline{y})) = \top$$

$$(x > s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r > s(\overline{y})) = \bot$$

$$(x \ge s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r \ge s(\overline{y})) = \bot$$

$$(x \approx s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r \approx s(\overline{y})) = \bot$$

$$(x \approx s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r \approx s(\overline{y})) = \bot$$

$$(x \approx s(\overline{y}))[-\infty/x] := \lim_{r \to -\infty} (r \approx s(\overline{y})) = \bot$$

Virtual substitution:

$$(x < s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon < s(\overline{y})) = (u < s(\overline{y}))$$

$$(x \le s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon \le s(\overline{y})) = (u < s(\overline{y}))$$

$$(x > s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon > s(\overline{y})) = (u \ge s(\overline{y}))$$

$$(x \ge s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon \ge s(\overline{y})) = (u \ge s(\overline{y}))$$

$$(x \approx s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon \approx s(\overline{y})) = \bot$$

$$(x \not\approx s(\overline{y}))[u + \epsilon/x] := \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} (u + \epsilon \approx s(\overline{y})) = \bot$$

We have traversed the real axis from $-\infty$ to $+\infty$.

Virtual substitution:

Alternatively, we can traverse it from $+\infty$ to $-\infty$.

In this case, the test points are

$$T' := \{+\infty\} \cup \{s_i(\overline{y}) | \sim_i \in \{\leq, \approx\}\} \cup \{s_i(\overline{y}) - \epsilon | \sim_i \in \{<, \not\approx\}\}.$$

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T' and take the smaller set.

For a universally quantified formula $\forall xF$, we replace it by $\neg \exists x \neg F$, push inner negation downwards, and then continue as before.

Note that there is no CNF/DNF transformation required.

Loos-Weispfenning quantifier elimination works on arbitrary positive formulas.

Loos-Weispfenning: Complexity

• One LW-step for ∃ or ∀:

As the number of test points is at most equal to the number of atoms, the formula size grows quadratically; therefore $O(n^2)$ runtime.

Multiple quantifiers of the same kind:

$$\exists x_2 \exists x_1 . F(x_1, x_2, \overline{y})$$

$$\mapsto \exists x_2 . \bigvee_{t_1 \in T_1} F(x_1, x_2, \overline{y})[t_1/x_1]$$

$$\mapsto \bigvee_{t_1 \in T_1} (\exists x_2 . F(x_1, x_2, \overline{y})[t_1/x_1])$$

$$\mapsto \bigvee_{t_1 \in T_1} \bigvee_{t_2 \in T_2} F(x_1, x_2, \overline{y})[t_1/x_1][t_2/x_2]$$

- m quantifiers \exists . . . \exists or \forall ... \forall : formula size is multiplied by n in each step \Rightarrow $O(n^{m+1})$ runtime.
- m quantifiers $\exists \forall \exists \forall \dots \forall :$ doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant. An efficient implementation must make use of simplification techniques.

Until now

Decidable fragments of first-order logic

Decision procedures for single theories

- UIF
- Numeric domains

Here:

Difference logic

Linear arithmetic over \mathbb{R} , \mathbb{Q}

Next: Reasoning in combinations of theories Combinations of decision procedures