Decision Procedures in Verification

First-Order Logic (4)

12.12.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Exam

Until now:

General Resolution

Soundness, refutational completeness
Refinements: Ordered resolution with selection

Consequences:

Herbrand's theorem
The Theorem of Löwenheim-Skolem
Compactness of first-order logic
Craig Interpolation

Resolution Calculus Reš

Let \succ be a total and well-founded ordering on ground atoms and S a selection function.

Ordered resolution with selection

$$
\frac{C \vee A \quad \neg B \vee D}{(C \vee D) \sigma} \quad \text { [ordered resolution with selection] }
$$

if $\sigma=\mathrm{mgu}(A, B)$ and
(i) $A \sigma$ strictly maximal wrt. $C \sigma$;
(ii) nothing is selected in C by S;
(iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \vee D$ and $\neg B \sigma$ is maximal in $D \sigma$.

Ordered factoring

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma} \quad \text { [ordered factoring] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $A \sigma$ is maximal in $C \sigma$ and nothing is selected in C.

Craig Interpolation

Theorem: Ress is sound and refutationally complete.

A theoretical application of ordered resolution is Craig- Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that $F \models G$.
Then there exists a formula H (called the interpolant for $F \models G$), such that H contains only propostional variables occurring both in F and in G, and such that $F \models H$ and $H \models G$.

Craig Interpolation

Proof:
Translate F and $\neg G$ into CNF.
Let N and M, resp., denote the resulting clause set.
Choose an atom ordering \succ for which the propositional variables that occur in F but not in G are maximal.

Saturate N into N^{*} wrt. $\operatorname{Res}_{S}^{\succ}$ with an empty selection function S.
Then saturate $N^{*} \cup M$ wrt. Res $\succ s$ to derive \perp.
As N^{*} is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^{*}, only contain symbols that also occur in G.

The conjunction of these premises is an interpolant H.
The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on resolution technology is more complicated because of Skolemization.

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Task: Is the union of the two databases consistent? If not: locate error

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: $F_{1} \wedge F_{2}$
Task: Is the union of the two databases consistent? If not: locate error

$$
F_{1} \wedge F_{2} \models \perp
$$

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: $F_{1} \wedge F_{2}$
Task: Is the union of the two databases consistent? If not: locate error

$$
\begin{aligned}
& F_{1} \wedge F_{2} \models \perp \\
& F_{1} \models \neg F_{2}
\end{aligned}
$$

(assume we are in prop. logic)

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)
Logical modeling: $F_{1} \wedge F_{2}$
Task: Is the union of the two databases consistent? If not: locate error

$$
\begin{aligned}
& F_{1} \wedge F_{2} \models \perp \\
& F_{1} \models \neg F_{2}
\end{aligned}
$$

Craig Interpolation (propositional case)
There exists / containing only propositional variables occurring in F_{1} and F_{2} such that:

$$
F_{1} \models I \text { and } I \models \neg F_{2}
$$

Applications of Craig Interpolation

Reasoning in combinations of theories

Given: Two theories (different but possibly overlapping languages)
s.t. decision procedures for component theories for certain fragments exist

Task: Reason in the combination of the two theories

Question: Which information needs to be exchanged between provers?
Answer: Craig Interpolation

The case of two disjoint theories will be discussed later in this lecture

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:
Can a state in a certain set of states E (error)
be reached from some state in a set l (initial) in k steps?
$\phi_{I} \wedge T_{1} \wedge T_{2} \wedge \cdots \wedge T_{k} \wedge \phi_{E}$

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:
Can a state in a certain set of states E (error)
be reached from some state in a set l (initial) in k steps?
$\underbrace{\left(\phi_{I} \wedge T_{1}\right)}_{F_{1}} \wedge \underbrace{\left(T_{2} \wedge \cdots \wedge T_{k} \wedge \phi_{E}\right)}_{F_{2}}$
Not reachable: $F_{1} \wedge F_{2} \models \perp$

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:
Can a state in a certain set of states E (error)
be reached from some state in a set l (initial) in k steps?
$\underbrace{\left(\phi_{I} \wedge T_{1}\right)}_{F_{1}} \wedge \underbrace{\left(T_{2} \wedge \cdots \wedge T_{k} \wedge \phi_{E}\right)}_{F_{2}}$
Not reachable: $F_{1} \wedge F_{2} \models \perp$

Interpolant: I overapproximates the set of successors of ϕ_{l}.

Goal

Goal: Make resolution efficient

Identify clauses which are not needed and can be discarded

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether?
Under which circumstances are clauses unnecessary?
(Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

Recall

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
9	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{3}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
7	$\neg P_{3} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	$\left\{P_{5}\right\}$	

The resulting $I=\left\{P_{1}, P_{2}, P_{3}, P_{5}\right\}$ is a model of the clause set.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called redundant w.r.t. N, if there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$, such that $C_{i} \prec C$ and $C_{1}, \ldots, C_{n} \models C$.

Redundancy for general clauses:
C is called redundant w.r.t. N, if all ground instances $C \sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \succ is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 2.40:

- C tautology (i.e., $\models C) \Rightarrow C$ redundant w.r.t. any set N.
- $C \sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup\{C\}$
- $C \sigma \subseteq D \Rightarrow D \vee \bar{L} \sigma$ redundant w.r.t. $N \cup\{C \vee L, D\}$
(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. $\operatorname{Res}_{S}^{\succ}$)

$$
: \Leftrightarrow \operatorname{Res}_{S}^{\succ}(N \backslash \operatorname{Red}(N)) \subseteq N \cup \operatorname{Red}(N)
$$

Theorem 2.41:
Let N be saturated up to redundancy. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Saturation up to Redundancy

Proof (Sketch):
(i) Ground case:

- consider the construction of the candidate model I_{N}^{\succ} for $\operatorname{Res}_{S}^{\succ}$
- redundant clauses are not productive
- redundant clauses in N are not minimal counterexamples for I_{N}^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.
(ii) Lifting: no additional problems over the proof of Theorem 2.39.

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof:
(i) Let $C \in \operatorname{Red}(N)$. Then there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$ such that $C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \models C$.

We assumed that $N \subseteq M$, so we know that $C_{1}, \ldots, C_{n} \in M$. Thus: there exist $C_{1}, \ldots, C_{n} \in M, n \geq 0$ such that $C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \models C$. Therefore, $C \in \operatorname{Red}(M)$.

Monotonicity Properties of Redundancy

Theorem 2.42:
(i) $N \subseteq M \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(M)$
(ii) $M \subseteq \operatorname{Red}(N) \Rightarrow \operatorname{Red}(N) \subseteq \operatorname{Red}(N \backslash M)$

Proof (Idea):
(ii) Let $C \in \operatorname{Red}(N)$. Then there exist $C_{1}, \ldots, C_{n} \in N, n \geq 0$ such that $C_{i} \prec C$ for all $i=1, \ldots, n$ and $C_{1}, \ldots, C_{n} \models C$.

Case 1: For all $i, C_{i} \notin M$. Then $C \in \operatorname{Red}(N \backslash M)$.
Case 2: For some $i, C_{i} \in M \subseteq \operatorname{Red}(N)$. Then for every such index i there exist $C_{1}^{i}, \ldots, C_{n_{i}}^{i} \in N$ such that $C_{j}^{i} \prec C_{i}$ and $C_{1}^{i}, \ldots, C_{n_{i}}^{i} \models C_{i}$. We can replace C_{i} above with $C_{1}^{i}, \ldots, C_{n_{i}}^{i}$. We can iterate the procedure until none of the C_{i} 's are in M (termination guaranteed by the fact that \succ is well-founded).

Some theorem provers for first-order logic

- SPASS http://www.spass-prover.org/
- E http://www4.informatik.tu-muenchen.de/~schulz/E/E.htm
- Vampire http://www.vprover.org/

Decidable subclasses of first-order logic

Applications

Use ordered resolution with selection to give a decision procedure for the Ackermann class.

The Ackermann class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Ackermann class consists of all sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
\exists x_{1} \ldots \exists x_{n} & \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right) \\
& \Rightarrow_{S} \forall x F\left(\bar{c}_{1}, \ldots, \bar{c}_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right) \\
& \Rightarrow_{K} \forall x \wedge \bigvee L_{i}\left(c_{1}, \ldots, c_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right)
\end{aligned}
$$

c_{1}, \ldots, c_{n} are Skolem constants
f_{1}, \ldots, f_{m} are unary Skolem functions

The Ackermann class

$\Sigma=(\Omega, \Pi), \Omega$ is a finite set of constants
The Ackermann class consists of all sentences of the form

$$
\exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right)
$$

Idea: CNF translation:

$$
\begin{aligned}
& \exists x_{1} \ldots \exists x_{n} \forall x \exists y_{1} \ldots \exists y_{m} F\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{m}\right) \\
& \quad \Rightarrow * \forall x \wedge \bigvee L_{i}\left(c_{1}, \ldots, c_{n}, x, f_{1}(x), \ldots, f_{m}(x)\right)
\end{aligned}
$$

The clauses are in the following classes:
$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols
$G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{1}, \ldots, f_{n}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols

The Ackermann class

$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols
$G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{1}, \ldots, f_{n}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols
Term ordering
$f(t) \succ t$; terms containing function symbols larger than those who do not.
$B \succ A$ iff exists argument u of B such that every argument t of $A: u \succ t$
Ordered resolution: $G \cup V \cup G_{f} \cup V_{f}$ is closed under ordered resolution.
$G, G \mapsto G ; \quad G, V \mapsto G ; \quad G, G_{f} \mapsto$ nothing; $\quad G, V_{f} \mapsto$ nothing
$V, V \mapsto V \cup G ; \quad V, G_{f} \mapsto G \cup G_{f} ; \quad V, V_{f} \mapsto G \cup V \cup G_{f} \cup V_{f}$
$G_{f}, G_{f} \mapsto G_{f} ; \quad G_{f}, V_{f} \mapsto G_{f} \cup G ; \quad V_{f}, V_{f} \mapsto G \cup V \cup V_{f} \cup G_{f}$
Observation 1: $G \cup V \cup G_{f} \cup V_{f}$ finite set of clauses (up to renaming of variables).

The Ackermann class

$G=G\left(c_{1}, \ldots, c_{n}\right)$ ground clauses without function symbols
$V=V\left(x, c_{1}, \ldots, c_{n}\right)$ clauses with one variable and without function symbols
$G_{f}=G\left(c_{1}, \ldots, c_{n}, f_{i}\right)$ ground clauses with function symbols
$V_{f}=V\left(x, c_{1}, \ldots, c_{n}, f_{1}(x), \ldots, f_{n}(x)\right)$ clauses with a variable \& function symbols
Term ordering
$f(t) \succ t$; terms containing function symbols larger than those who do not.
$B \succ A$ iff exists argument u of B such that every argument t of $A: u \succ t$
Ordered resolution: $G \cup V \cup G_{f} \cup V_{f}$ is closed under ordered resolution.
$G, G \mapsto G ; \quad G, V \mapsto G ; \quad G, G f \mapsto$ nothing; $\quad G, V_{f} \mapsto$ nothing $V, V \mapsto V \cup G ; \quad V, G_{f} \mapsto G \cup G_{f} ; \quad V, V_{f} \mapsto G \cup V \cup G_{f} \cup V_{f}$
$G_{f}, G_{f} \mapsto G_{f} ; \quad G_{f}, V_{f} \mapsto G_{f} \cup G ; \quad V_{f}, V_{f} \mapsto G \cup V \cup V_{f} \cup G_{f}$
Observation 2: No clauses with nested function symbols can be generated.

The Ackermann Class

Conclusion:

Resolution (with implicit factorization) will always terminate if the input clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of formulae in the Ackermann class.

The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely relational signatures $\Sigma=(\Omega, \Pi)$, where $\Omega=\emptyset$, and every $p \in \Pi$ has arity 1 .

Abstract syntax:

$$
\Phi:=\top|P(x)| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \forall x \Phi
$$

Idea. Let Φ be a MFO formula with k predicate symbols.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}\right\}_{p \in \Pi}\right)$ be a Σ-algebra. The only way to distinguish the elements of $U_{\mathcal{A}}$ is by the atomic formulae $p(x), p \in \Pi$.

- the elements which $a \in U_{\mathcal{A}}$ which belong to the same $p_{\mathcal{A}}$'s, $p \in \Pi$ can be collapsed into one single element.
- if $\Pi=\left\{p^{1}, \ldots, p^{k}\right\}$ then what remains is a finite structure with at most 2^{k} elements.
- the truth value of a formula: computed by evaluating all subformulae.

The Monadic Class

MFO Abstract syntax: $\Phi:=\top|P(x)| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| \forall x \Phi$
Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^{k}$.

Proof: Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

The Monadic Class

Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

Induction on the structure of Φ

- $\Phi=\top$ OK
- $\Phi=p^{i}(x)$. Then $(\mathcal{A}, \beta) \models \Phi$ iff $\beta(x) \in p_{\mathcal{A}}^{i}$ iff $h(\beta(x)) \in p_{\mathcal{B}}^{i}$ iff $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

The Monadic Class

Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

Induction on the structure of Φ

- $\Phi=\Phi_{1} \wedge \Phi_{2}$: standard
- $\Phi=\neg \Phi_{1}:$ standard

The Monadic Class

Let $\mathcal{B}=\left(\{0,1\}^{k},\left\{p_{\mathcal{B}}^{1}, \ldots, p_{\mathcal{B}}^{k}\right\}\right)$, where $p_{\mathcal{B}}^{i}=\left\{\left(b_{1}, \ldots, b_{k}\right) \mid b_{i}=1\right\}$.
Let $\mathcal{A}=\left(U_{\mathcal{A}},\left\{p_{\mathcal{A}}^{1}, \ldots, p_{\mathcal{A}}^{k}\right\}\right), \beta: X \rightarrow U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.
We construct a model for Φ with cardinality at most 2^{k} as follows:

- Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be defined for all $a \in U_{\mathcal{A}}$ by:

$$
h(a)=\left(b_{1}, \ldots, b_{k}\right) \text { where } b_{i}=1 \text { if } a \in p_{\mathcal{A}}^{i} \text { and } 0 \text { otherwise. }
$$

Then $a \in p_{\mathcal{A}}^{i}$ iff $h(a) \in p_{\mathcal{B}}^{i}$ for all $a \in U_{\mathcal{A}}$ and all $i=1, \ldots, k$.

- Let $\mathcal{B}^{\prime}=\left(\{0,1\}^{k} \cap h\left(U_{\mathcal{A}}\right),\left\{p_{\mathcal{B}}^{1} \cap h\left(U_{\mathcal{A}}\right), \ldots, p_{\mathcal{B}}^{k} \cap h\left(U_{\mathcal{A}}\right)\right\}\right)$.
- We show that $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$.

Induction on the structure of Φ

- $\Phi=\forall x \Phi_{1}(x)$. Then the following are equivalent:
$-(\mathcal{A}, \beta) \models \Phi$ (i.e. $(\mathcal{A}, \beta[x \mapsto a]) \models \Phi_{1}$ for all $\left.a \in U_{\mathcal{A}}\right)$
$-\left(\mathcal{B}^{\prime}, \beta[x \mapsto a] \circ h\right) \models \Phi_{1}$ for all $a \in U_{\mathcal{A}}$ (ind. hyp)
$-\left(\mathcal{B}^{\prime}, \beta \circ h[x \mapsto b]\right) \models \Phi_{1}$ for all $b \in\{0,1\}^{k} \cap h(A)$ (i.e. $\left(\mathcal{B}^{\prime}, \beta \circ h\right) \models \Phi$)

The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several other classes):

William H. Joyner Jr.
Resolution Strategies as Decision Procedures.
J. ACM 23(3): 398-417 (1976)

Idea:

- Use orderings to restrict the possible inferences
- Identify a class of clauses (with terms of bounded depth) which contains the type of clauses generated from the respective fragment and is closed under ordered resolution (+ red. elim. criteria)
- Show that a saturation of the clauses can be obtained in finite time

The Monadic Class

Resolution-based decision procedure for the Monadic Class:
$\Phi: \quad \forall \bar{x}_{1} \exists \bar{y}_{1} \ldots \forall \bar{x}_{k} \exists \bar{y}_{k}\left(\ldots . p^{s}\left(x_{i}\right) \ldots \ldots p^{\prime}\left(y_{i}\right) \ldots\right)$
$\mapsto \quad \forall \bar{x}_{1} \ldots \forall \bar{x}_{k}\left(\ldots p^{s}\left(x_{i}\right) \ldots p^{\prime}\left(f_{\text {sk }}\left(\bar{x}_{1}, \ldots, \bar{x}_{i}\right) \ldots\right)\right.$
Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears
- each variable-disjoint partition has at most $n=\sum_{i=1}\left|\bar{x}_{i}\right|$ variables (can order the variables as x_{1}, \ldots, x_{n})
- the variables of each non-ground block can occur either in atoms $p\left(x_{i}\right)$ or in atoms $P\left(f_{\text {sk }}\left(x_{1}, \ldots, x_{t}\right)\right), 0 \leq t \leq n$

It can be shown that this class contains all CNF's of formulae in the monadic class and is closed under ordered resolution.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let $\Sigma=(\{e / 0, * / 2, i / 1\}, \emptyset)$
Let \mathcal{F} consist of all (universally quantified) group axioms:

$$
\begin{array}{rl}
\forall x, y, z & x *(y * z) \\
\forall x & x * i(x) \\
\forall x \in(x * y) * z \\
\forall x & x * e
\end{array}
$$

Question: Is $\forall x, y(x * y=y * x)$ entailed by \mathcal{F} ?
Alternative question:
Is $\forall x, y(x * y=y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ-formulae.
the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \vDash G$, for all G in $\mathcal{F}\}$

Semantic view

given a class \mathcal{M} of Σ-algebras
the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \models G\right\}$

Decidable theories

Let $\Sigma=(\Omega, \Pi)$ be a signature.
\mathcal{M} : class of Σ-algebras. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)

Peano arithmetic

$$
\begin{array}{llr}
\text { Peano axioms: } & \forall x \neg(x+1 \approx 0) & \text { (zero) } \tag{zero}\\
& \forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \\
& F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
& \forall x(x+0 \approx x) & \text { (plus zero) } \\
& \forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
& \forall x, y(x * 0 \approx 0) & \text { (times 0) } \\
& \forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) } \\
3 * y+5>2 * y \text { expressed as } \exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)
\end{array}
$$

Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Goedel's incompleteness theorem)

Examples

Undecidable theories

- Th $((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
- Th (Σ-alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language
$\{(G(M), w) \mid G(M)$ is the Gödelisation of a TM M that accepts the string $w\}$

As the latter problem is undecidable, this will show that P cannot exist.

Examples

Undecidable theories

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
- Peano arithmetic
-Th(Σ-alg)
Idea of undecidability proof: (ctd)
(1) For $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$ and Peano arithmetic:
multiplication can be used for modeling Gödelisation
(2) For $\operatorname{Th}(\Sigma$-alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29]

Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$
Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}

- $\operatorname{Th}\left(\mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

\mathcal{T} : first-order theory in signature $\Sigma ; \mathcal{L}$ class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem Th $_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\} \quad$ clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\} \quad$ universal validity problem Th_{\forall}
$\mathcal{L}=\left\{\exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification problem $\quad \mathrm{Th}_{\exists}$
$\mathcal{L}=\left\{\forall x \exists x A_{1} \wedge \ldots \wedge A_{n} \mid A_{i}\right.$ atomic $\} \quad$ unification with constants $\mathrm{Th}_{\forall \exists}$

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

\mathcal{T}-validity: Let \mathcal{T} be a first-order theory in signature Σ
Let \mathcal{L} be a class of (closed) Σ-formulae
Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T}-validity problem has a dual \mathcal{T}-satisfiability problem:
\mathcal{T}-satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ-formulae

$$
\neg \mathcal{L}=\{\neg \phi \mid \phi \in \mathcal{L}\}
$$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

Common restrictions on $\mathcal{L} / \neg \mathcal{L}$

\mathcal{L}	$\neg \mathcal{L}$
$\{\forall x A(x) \mid A$ atomic $\}$	$\{\exists x \neg A(x) \mid A$ atomic $\}$
$\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$	$\left\{\exists x\left(A_{1} \wedge \ldots \wedge A_{n} \wedge \neg B\right) \mid A_{i}, B\right.$ atomic $\}$
$\left\{\forall x \bigvee L_{i} \mid L_{i}\right.$ literals $\}$	$\left\{\exists x \wedge L_{i}^{\prime} \mid L_{i}^{\prime}\right.$ literals $\}$
$\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$	$\left\{\exists x \phi^{\prime}(x) \mid \phi^{\prime}(x)\right.$ unquantified $\}$

validity problem for universal formulae ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

\mathcal{T}-validity vs. \mathcal{T}-satisfiability

$$
\begin{array}{lll}
\mathcal{T} \equiv \forall x A(x) & \text { iff } & \mathcal{T} \cup \exists x \neg A(x) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(A_{1} \wedge \cdots \wedge A_{n} \rightarrow B\right) & \text { iff } & \mathcal{T} \cup \exists x\left(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\right) \text { unsatisfiable } \\
\mathcal{T} \vDash \forall x\left(\bigvee_{i=1}^{n} A_{i} \vee \bigvee_{j=1}^{m} \neg B_{j}\right) & \text { iff } & \mathcal{T} \cup \exists x\left(\neg A_{1} \wedge \cdots \wedge \neg A_{n} \wedge B_{1} \wedge \cdots \wedge B_{m}\right) \\
& & \text { unsatisfiable }
\end{array}
$$

\mathcal{T}-satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems
But be careful:

- in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T}.
- in \mathcal{T}-satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

