Decision Procedures in Verification

First-Order Logic (4)

12.12.2016

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Exam

Until now:

General Resolution

Soundness, refutational completeness

Refinements: Ordered resolution with selection

Consequences:

Herbrand's theorem

The Theorem of Löwenheim-Skolem

Compactness of first-order logic

Craig Interpolation

Resolution Calculus Res_S^{\succ}

Let \succ be a total and well-founded ordering on ground atoms and S a selection function.

Ordered resolution with selection

$$\frac{C \vee A \qquad \neg B \vee D}{(C \vee D)\sigma}$$
 [ordered resolution with selection]

if $\sigma = mgu(A, B)$ and

- (i) $A\sigma$ strictly maximal wrt. $C\sigma$;
- (ii) nothing is selected in C by S;
- (iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \lor D$ and $\neg B\sigma$ is maximal in $D\sigma$.

Ordered factoring

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$
 [ordered factoring]

if $\sigma = mgu(A, B)$ and $A\sigma$ is maximal in $C\sigma$ and nothing is selected in C.

Craig Interpolation

Theorem: Res_S^{\succ} is sound and refutationally complete.

A theoretical application of ordered resolution is Craig- Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that $F \models G$.

Then there exists a formula H (called the interpolant for $F \models G$), such that H contains only propostional variables occurring both in F and in G, and such that $F \models H$ and $H \models G$.

Craig Interpolation

Proof:

Translate F and $\neg G$ into CNF.

Let N and M, resp., denote the resulting clause set.

Choose an atom ordering \succ for which the propositional variables that occur in F but not in G are maximal.

Saturate N into N^* wrt. Res $_S^{\succ}$ with an empty selection function S.

Then saturate $N^* \cup M$ wrt. Res \succ_S to derive \bot .

As N^* is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^* , only contain symbols that also occur in G.

The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on resolution technology is more complicated because of Skolemization.

Modular databases

Given: Two databases (different but possibly overlapping languages)

Task: Is the union of the two databases consistent? If not: locate error

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: $F_1 \wedge F_2$

Task: Is the union of the two databases consistent? If not: locate error

$$F_1 \wedge F_2 \models \perp$$

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: $F_1 \wedge F_2$

Task: Is the union of the two databases consistent? If not: locate error

$$F_1 \wedge F_2 \models \perp$$

$$F_1 \models \neg F_2$$
 (assume we are in prop. logic)

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: $F_1 \wedge F_2$

Task: Is the union of the two databases consistent? If not: locate error

$$F_1 \wedge F_2 \models \perp$$

$$F_1 \models \neg F_2$$
 (assume we are in prop. logic)

Craig Interpolation (propositional case)

There exists I containing only propositional variables occurring in F_1 and F_2 such that:

$$F_1 \models I$$
 and $I \models \neg F_2$

Reasoning in combinations of theories

Given: Two theories (different but possibly overlapping languages) s.t. decision procedures for component theories for certain fragments exist

Task: Reason in the combination of the two theories

Question: Which information needs to be exchanged between provers?

Answer: Craig Interpolation

The case of two disjoint theories will be discussed later in this lecture

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error) be reached from some state in a set I (initial) in k steps?

$$\phi_I \wedge T_1 \wedge T_2 \wedge \cdots \wedge T_k \wedge \phi_E$$

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error) be reached from some state in a set I (initial) in k steps?

$$\underbrace{(\phi_I \wedge T_1)}_{F_1} \wedge \underbrace{(T_2 \wedge \cdots \wedge T_k \wedge \phi_E)}_{F_2}$$

Not reachable: $F_1 \wedge F_2 \models \perp$

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae
- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error) be reached from some state in a set I (initial) in k steps?

$$\underbrace{(\phi_I \wedge T_1)}_{F_1} \wedge \underbrace{(T_2 \wedge \cdots \wedge T_k \wedge \phi_E)}_{F_2}$$
 Not reachable: $F_1 \wedge F_2 \models \bot$

Interpolant: I overapproximates the set of successors of ϕ_I .

Goal

Goal: Make resolution efficient

Identify clauses which are not needed and can be discarded

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether?
Under which circumstances are clauses unnecessary?
(Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

Recall

Construction of *I* for the extended clause set:

	clauses <i>C</i>	I _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \vee P_1$	Ø	$\{P_1\}$	
3	$P_1 ee P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 ee P_2$	$\{P_1\}$	$\{P_2\}$	
9	$\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_3\}$	
8	$\neg P_1 \vee \neg P_1 \vee P_3 \vee P_3 \vee P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	
6	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called redundant w.r.t. N, if there exist $C_1, \ldots, C_n \in N$, $n \geq 0$, such that $C_i \prec C$ and $C_1, \ldots, C_n \models C$.

Redundancy for general clauses:

C is called redundant w.r.t. N, if all ground instances $C\sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \succ is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 2.40:

- C tautology (i.e., $\models C$) \Rightarrow C redundant w.r.t. any set N.
- $C\sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup \{C\}$
- $C\sigma \subseteq D \Rightarrow D \vee \overline{L}\sigma$ redundant w.r.t. $N \cup \{C \vee L, D\}$

(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res_S^{\succ})

$$:\Leftrightarrow Res_{\mathcal{S}}^{\succ}(N\setminus Red(N))\subseteq N\cup Red(N)$$

Theorem 2.41:

Let N be saturated up to redundancy. Then

$$N \models \bot \Leftrightarrow \bot \in N$$

Saturation up to Redundancy

Proof (Sketch):

- (i) Ground case:
 - consider the construction of the candidate model I_N^{\succ} for Res_S^{\succ}
 - redundant clauses are not productive
 - redundant clauses in N are not minimal counterexamples for I_N^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.39.

Monotonicity Properties of Redundancy

Theorem 2.42:

- (i) $N \subseteq M \Rightarrow Red(N) \subseteq Red(M)$
- (ii) $M \subseteq Red(N) \Rightarrow Red(N) \subseteq Red(N \setminus M)$

Proof:

(i) Let $C \in Red(N)$. Then there exist $C_1, \ldots, C_n \in N$, $n \geq 0$ such that $C_i \prec C$ for all $i = 1, \ldots, n$ and $C_1, \ldots, C_n \models C$.

We assumed that $N \subseteq M$, so we know that $C_1, \ldots, C_n \in M$. Thus: there exist $C_1, \ldots, C_n \in M$, $n \geq 0$ such that $C_i \prec C$ for all $i = 1, \ldots, n$ and $C_1, \ldots, C_n \models C$. Therefore, $C \in Red(M)$.

Monotonicity Properties of Redundancy

Theorem 2.42:

- (i) $N \subseteq M \Rightarrow Red(N) \subseteq Red(M)$
- (ii) $M \subseteq Red(N) \Rightarrow Red(N) \subseteq Red(N \setminus M)$

Proof (Idea):

(ii) Let $C \in Red(N)$. Then there exist $C_1, \ldots, C_n \in N$, $n \geq 0$ such that $C_i \prec C$ for all $i = 1, \ldots, n$ and $C_1, \ldots, C_n \models C$.

Case 1: For all $i, C_i \not\in M$. Then $C \in Red(N \setminus M)$.

Case 2: For some $i, C_i \in M \subseteq Red(N)$. Then for every such index i there exist $C_1^i, \ldots, C_{n_i}^i \in N$ such that $C_j^i \prec C_i$ and $C_1^i, \ldots, C_{n_i}^i \models C_i$. We can replace C_i above with $C_1^i, \ldots, C_{n_i}^i$. We can iterate the procedure until none of the C_i 's are in M (termination guaranteed by the fact that \succ is well-founded).

Some theorem provers for first-order logic

SPASS http://www.spass-prover.org/
 E http://www4.informatik.tu-muenchen.de/~schulz/E/E.html
 Vampire http://www.vprover.org/

Decidable subclasses of first-order logic

Applications

Use ordered resolution with selection to give a decision procedure for the Ackermann class.

 $\Sigma = (\Omega, \Pi)$, Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

$$\exists x_1 \ldots \exists x_n \forall x \exists y_1 \ldots \exists y_m F(x_1, \ldots, x_n, x, y_1, \ldots, y_m)$$

Idea: CNF translation:

$$\exists x_1 \dots \exists x_n \forall x \exists y_1 \dots \exists y_m F(x_1, \dots, x_n, x, y_1, \dots, y_m)$$

$$\Rightarrow_S \forall x F(\overline{c}_1, \dots, \overline{c}_n, x, f_1(x), \dots, f_m(x))$$

$$\Rightarrow_K \forall x \bigwedge \bigvee L_i(c_1, \dots, c_n, x, f_1(x), \dots, f_m(x))$$

 c_1, \ldots, c_n are Skolem constants

 f_1, \ldots, f_m are unary Skolem functions

 $\Sigma = (\Omega, \Pi)$, Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

$$\exists x_1 \ldots \exists x_n \forall x \exists y_1 \ldots \exists y_m F(x_1, \ldots, x_n, x, y_1, \ldots, y_m)$$

Idea: CNF translation:

$$\exists x_1 \dots \exists x_n \forall x \exists y_1 \dots \exists y_m F(x_1, \dots, x_n, x, y_1, \dots, y_m)$$

$$\Rightarrow^* \forall x \wedge \bigvee L_i(c_1, \dots, c_n, x, f_1(x), \dots, f_m(x))$$

The clauses are in the following classes:

 $G = G(c_1, \ldots, c_n)$ ground clauses without function symbols $V = V(x, c_1, \ldots, c_n)$ clauses with one variable and without function symbols $G_f = G(c_1, \ldots, c_n, f_1, \ldots, f_n)$ ground clauses with function symbols $V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x))$ clauses with a variable & function symbols

```
G = G(c_1, \ldots, c_n) ground clauses without function symbols V = V(x, c_1, \ldots, c_n) clauses with one variable and without function symbols G_f = G(c_1, \ldots, c_n, f_1, \ldots, f_n) ground clauses with function symbols V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x)) clauses with a variable & function symbols
```

Term ordering

f(t) > t; terms containing function symbols larger than those who do not.

 $B \succ A$ iff exists argument u of B such that every argument t of A: $u \succ t$

Ordered resolution: $G \cup V \cup G_f \cup V_f$ is closed under ordered resolution.

$$G, G \mapsto G; G, V \mapsto G; G, G_f \mapsto \text{nothing}; G, V_f \mapsto \text{nothing}$$

$$V, V \mapsto V \cup G; \quad V, G_f \mapsto G \cup G_f; \quad V, V_f \mapsto G \cup V \cup G_f \cup V_f$$

$$G_f, G_f \mapsto G_f; \quad G_f, V_f \mapsto G_f \cup G; \quad V_f, V_f \mapsto G \cup V \cup V_f \cup G_f$$

Observation 1: $G \cup V \cup G_f \cup V_f$ finite set of clauses (up to renaming of variables).

```
G = G(c_1, \ldots, c_n) ground clauses without function symbols V = V(x, c_1, \ldots, c_n) clauses with one variable and without function symbols G_f = G(c_1, \ldots, c_n, f_i) ground clauses with function symbols V_f = V(x, c_1, \ldots, c_n, f_1(x), \ldots, f_n(x)) clauses with a variable & function symbols
```

Term ordering

f(t) > t; terms containing function symbols larger than those who do not.

 $B \succ A$ iff exists argument u of B such that every argument t of A: $u \succ t$

Ordered resolution: $G \cup V \cup G_f \cup V_f$ is closed under ordered resolution.

$$G, G \mapsto G; G, V \mapsto G; G, G_f \mapsto \text{nothing}; G, V_f \mapsto \text{nothing}$$

$$V, V \mapsto V \cup G; \quad V, G_f \mapsto G \cup G_f; \quad V, V_f \mapsto G \cup V \cup G_f \cup V_f$$

$$G_f, G_f \mapsto G_f; \quad G_f, V_f \mapsto G_f \cup G; \quad V_f, V_f \mapsto G \cup V \cup V_f \cup G_f$$

Observation 2: No clauses with nested function symbols can be generated.

Conclusion:

Resolution (with implicit factorization) will always terminate if the input clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of formulae in the Ackermann class.

Monadic first-order logic (MFO) is FOL (without equality) over purely relational signatures $\Sigma = (\Omega, \Pi)$, where $\Omega = \emptyset$, and every $p \in \Pi$ has arity 1.

Abstract syntax:

$$\Phi := \top \mid P(x) \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \forall x \Phi$$

Idea. Let Φ be a MFO formula with k predicate symbols.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}\}_{p \in \Pi})$ be a Σ -algebra. The only way to distinguish the elements of $U_{\mathcal{A}}$ is by the atomic formulae p(x), $p \in \Pi$.

- the elements which $a \in U_A$ which belong to the same p_A 's, $p \in \Pi$ can be collapsed into one single element.
- if $\Pi = \{p^1, \dots, p^k\}$ then what remains is a *finite structure* with at most 2^k elements.
- the truth value of a formula: computed by evaluating all subformulae.

MFO Abstract syntax:
$$\Phi := \top \mid P(x) \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \forall x \Phi$$

Theorem (Finite model theorem for MFO). If Φ is a satisfiable MFO formula with k predicate symbols then Φ has a model where the domain is a subset of $\{0,1\}^k$.

Proof: Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \dots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \dots, b_k) \mid b_i = 1\}$. Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\})$, $\beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$. We construct a model for Φ with cardinality at most 2^k as follows:

• Let $h: A \to B$ be defined for all $a \in U_A$ by:

$$h(a)=(b_1,\ldots,b_k)$$
 where $b_i=1$ if $a\in p_\mathcal{A}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all $i = 1, \ldots, k$.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$.

Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \ldots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \ldots, b_k) \mid b_i = 1\}$.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\}), \ \beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.

We construct a model for Φ with cardinality at most 2^k as follows:

• Let $h: A \to B$ be defined for all $a \in U_A$ by:

$$h(a)=(b_1,\ldots,b_k)$$
 where $b_i=1$ if $a\in p_{\mathcal{A}}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all $i = 1, \ldots, k$.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$.

Induction on the structure of Φ

- $\Phi = \top OK$
- $\Phi = p^i(x)$. Then $(A, \beta) \models \Phi$ iff $\beta(x) \in p_A^i$ iff $h(\beta(x)) \in p_B^i$ iff $(B', \beta \circ h) \models \Phi$.

Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \ldots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \ldots, b_k) \mid b_i = 1\}$.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\}), \ \beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.

We construct a model for Φ with cardinality at most 2^k as follows:

• Let $h: A \to B$ be defined for all $a \in U_A$ by:

$$h(a)=(b_1,\ldots,b_k)$$
 where $b_i=1$ if $a\in p_{\mathcal{A}}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all $i = 1, \ldots, k$.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$.

Induction on the structure of Φ

- $\Phi = \Phi_1 \wedge \Phi_2$: standard
- $\Phi = \neg \Phi_1$: standard

Let $\mathcal{B} = (\{0,1\}^k, \{p_{\mathcal{B}}^1, \ldots, p_{\mathcal{B}}^k\})$, where $p_{\mathcal{B}}^i = \{(b_1, \ldots, b_k) \mid b_i = 1\}$.

Let $\mathcal{A} = (U_{\mathcal{A}}, \{p_{\mathcal{A}}^1, \dots, p_{\mathcal{A}}^k\}), \ \beta : X \to U_{\mathcal{A}}$ be such that $(\mathcal{A}, \beta) \models \Phi$.

We construct a model for Φ with cardinality at most 2^k as follows:

• Let $h: A \to B$ be defined for all $a \in U_A$ by:

$$h(a)=(b_1,\ldots,b_k)$$
 where $b_i=1$ if $a\in p_\mathcal{A}^i$ and 0 otherwise.

Then $a \in p_{\mathcal{A}}^i$ iff $h(a) \in p_{\mathcal{B}}^i$ for all $a \in U_{\mathcal{A}}$ and all $i = 1, \ldots, k$.

- Let $\mathcal{B}' = (\{0,1\}^k \cap h(U_{\mathcal{A}}), \{p_{\mathcal{B}}^1 \cap h(U_{\mathcal{A}}), \ldots, p_{\mathcal{B}}^k \cap h(U_{\mathcal{A}})\}).$
- We show that $(\mathcal{B}', \beta \circ h) \models \Phi$.

Induction on the structure of Φ

- $\Phi = \forall x \Phi_1(x)$. Then the following are equivalent:
 - $-(\mathcal{A},\beta)\models\Phi$ (i.e. $(\mathcal{A},\beta[x\mapsto a])\models\Phi_1$ for all $a\in U_{\mathcal{A}}$)
 - $-(\mathcal{B}', \beta[x \mapsto a] \circ h) \models \Phi_1 \text{ for all } a \in U_{\mathcal{A}} \text{ (ind. hyp)}$
 - $-(\mathcal{B}', \beta \circ h[x \mapsto b]) \models \Phi_1 \text{ for all } b \in \{0, 1\}^k \cap h(A) \text{ (i.e. } (\mathcal{B}', \beta \circ h) \models \Phi)$

The Monadic Class

Resolution-based decision procedure for the Monadic Class (and for several other classes):

William H. Joyner Jr.

Resolution Strategies as Decision Procedures.

J. ACM 23(3): 398-417 (1976)

Idea:

- Use orderings to restrict the possible inferences
- Identify a class of clauses (with terms of bounded depth) which contains the type of clauses generated from the respective fragment and is closed under ordered resolution (+ red. elim. criteria)
- Show that a saturation of the clauses can be obtained in finite time

The Monadic Class

Resolution-based decision procedure for the Monadic Class:

$$\Phi: \quad \forall \overline{x}_1 \exists \overline{y}_1 \dots \forall \overline{x}_k \exists \overline{y}_k (\dots p^s(x_i) \dots p^l(y_i) \dots)$$

$$\mapsto \quad \forall \overline{x}_1 \dots \forall \overline{x}_k (\dots p^s(x_i) \dots p^l(f_{sk}(\overline{x}_1, \dots, \overline{x}_i) \dots)$$

Consider the class MON of clauses with the following properties:

- no literal of heigth greater than 2 appears
- each variable-disjoint partition has at most $n = \sum_{i=1}^{n} |\overline{x}_i|$ variables (can order the variables as x_1, \ldots, x_n)
- the variables of each non-ground block can occur either in atoms $p(x_i)$ or in atoms $P(f_{sk}(x_1, ..., x_t))$, $0 \le t \le n$

It can be shown that this class contains all CNF's of formulae in the monadic class and is closed under ordered resolution.

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\{e/0, */2, i/1\}, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \qquad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \qquad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\{e/0, */2, i/1\}, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \quad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \quad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Alternative question:

Is $\forall x, y(x * y = y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae.

the models of \mathcal{F} : $\mathsf{Mod}(\mathcal{F}) = \{ \mathcal{A} \in \Sigma \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F} \}$

Semantic view

given a class ${\mathcal M}$ of Σ -algebras

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Decidable theories

Let $\Sigma = (\Omega, \Pi)$ be a signature.

 \mathcal{M} : class of Σ -algebras. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

 \mathcal{F} : class of (closed) first-order formulae.

The theory $\mathcal{T} = \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Undecidable theories

- ulletTh((\mathbb{Z} , {0, 1, +, *}, { \leq }))
- Peano arithmetic
- ulletTh(Σ -alg)

Peano arithmetic

Peano axioms:
$$\forall x \neg (x+1 \approx 0)$$
 (zero) $\forall x \forall y \ (x+1 \approx y+1 \rightarrow x \approx y)$ (successor) $F[0] \land (\forall x \ (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$ (induction) $\forall x \ (x+0 \approx x)$ (plus zero) $\forall x, y \ (x+(y+1) \approx (x+y)+1)$ (plus successor) $\forall x, y \ (x*0 \approx 0)$ (times 0) $\forall x, y \ (x*(y+1) \approx x*y+x)$ (times successor) $3*y+5>2*y$ expressed as $\exists z \ (z \neq 0 \land 3*y+5 \approx 2*y+z)$

Intended interpretation: (
$$\mathbb{N}$$
, $\{0, 1, +, *\}$, $\{\approx, \leq\}$) (does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable theories

- $\bullet \mathsf{Th}((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language

 $\{(G(M), w)|G(M) \text{ is the G\"{o}delisation of a TM } M \text{ that accepts the string w } \}$

As the latter problem is undecidable, this will show that P cannot exist.

Undecidable theories

- $\bullet Th((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: (ctd)

(1) For Th((\mathbb{Z} , {0, 1, +, *}, { \leq })) and Peano arithmetic:

multiplication can be used for modeling Gödelisation

(2) For Th(Σ -alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29] Signature: $(\{0, 1, +\}, \{\approx, \leq\})$ (no *)

 Axioms $\{$ (zero), (successor), (induction), (plus zero), (plus successor) $\}$
- Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem	
$\mathcal{L}=\{\forall x(A_1\wedge\ldots\wedge A_n\rightarrow B)\mid A_i, B \text{ atomic}\}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	$Th_{\forall,cl}$
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	$Th_orall$
$\mathcal{L}=\{\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L}=\{\forall x\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification with constants	$Th_{orall \exists}$

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 \mathcal{T} -satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae $\neg \mathcal{L} = \{ \neg \phi \mid \phi \in \mathcal{L} \}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \wedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \land L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

$$\mathcal{T} \models \forall x A(x) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x \neg A(x) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (A_1 \wedge \cdots \wedge A_n \rightarrow B) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (A_1 \wedge \cdots \wedge A_n \wedge \neg B) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (\bigvee_{i=1}^n A_i \vee \bigvee_{j=1}^m \neg B_j) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (\neg A_1 \wedge \cdots \wedge \neg A_n \wedge B_1 \wedge \cdots \wedge B_m)$$

$$\text{unsatisfiable}$$

\mathcal{T} -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems But be careful:

- ullet in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T} .
- ullet in \mathcal{T} -satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.