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Last time

Propositional Logic

1.1 Syntax

• Language

– propositional variables

– logical symbols

⇒ Boolean combinations

• Propositional Formulae

1.2 Semantics

• Valuations

• Truth value of a formula in a valuation

• Models, Validity, and Satisfiability
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Canonical forms

• CNF and DNF

• Computing CNF/DNF by rewriting the formulae

• Structure-Preserving Translation for CNF

• Optimized translation using polarity
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Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm
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1.5 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸︷︷︸

conclusion

.

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.
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Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi ) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .
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Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . ,Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥
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1.6 The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

C ,D: clauses

A atom (propositional variable)
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.
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Sample Refutation

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨Q ∨Q (Res. 2. into 1.)

6. ¬P ∨Q (Fact. 5.)

7. Q ∨Q (Res. 2. into 6.)

8. Q (Fact. 7.)

9. ¬R (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D

C ∨ D

1. ¬P ∨ ¬P ∨Q (given)

2. P ∨Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨Q (Res. 2. into 1.)

6. Q ∨ Q ∨ Q (Res. 2. into 5.)

7. ¬R (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)
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Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.

Proof:

Let A valuation. To be shown:

(i) for resolution: A |= C ∨ A, A |= D ∨ ¬A ⇒ A |= C ∨ D

(ii) for factorization: A |= C ∨ A ∨ A ⇒ A |= C ∨ A

(i): Assume A∗(C ∨ A) = 1,A∗(D ∨ ¬A) = 1.

Two cases need to be considered: (a) A∗(A) = 1, or (b) A∗(¬A) = 1.

(a) A |= A ⇒ A |= D ⇒ A |= C ∨ D

(b) A |= ¬A ⇒ A |= C ⇒ A |= C ∨ D

(ii): Assume A |= C ∨A∨A. Note that A∗(C ∨A∨A) = A∗(C ∨A),

i.e. the conclusion is also true in A.
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Soundness of Resolution

Note: In propositional logic we have:

1. A |= L1 ∨ . . . ∨ Ln ⇔ there exists i : A |= Li .

2. A |= A or A |= ¬A.
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Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of valuations.

• The limit valuation can be shown to be a model of N.
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Clause Orderings

1. We assume that ≻ is any fixed ordering on propositional

variables that is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .
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Multi-Set Orderings

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to

multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ ≻ m and S1(m
′) > S2(m

′))]

Theorem 1.11:

a) ≻mul is a partial ordering.

b) ≻ well-founded ⇒ ≻mul well-founded

c) ≻ total ⇒ ≻mul total

Proof:

see Baader and Nipkow, page 22–24.
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Example

Suppose P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0. Then:

P0 ∨ P1

≺ P1 ∨ P2

≺ ¬P1 ∨ P2

≺ ¬P1 ∨ P4 ∨ P3

≺ ¬P1 ∨ ¬P4 ∨ P3

≺ ¬P5 ∨ P5
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Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

{

{
..
.

.

..
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A
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Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Proposition 1.12

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res
∗(N)

19



Construction of Interpretations

Given: set N of clauses, atom ordering ≻.

Wanted: Valuation A such that

• “many” clauses from N are valid in A;

• A |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺. We construct a

model for N incrementally.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

In what follows, instead of referring to partial valuations

AC we will refer to partial interpretations IC (the set of

atoms which are true in the valuation AC ).

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

Construction of I :

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2}

5 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

6 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

7 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

8 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

9 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ P3 not maximal;

min. counter-ex.

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

I = {P1,P2,P4,P5} = A−1(1): A is not a model of the clause set

⇒ there exists a counterexample.

29



Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if

A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).
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Resolution Reduces Counterexamples

¬P1 ∨ P4 ∨ P3 ∨ P0 ¬P1 ∨ ¬P4 ∨ P3

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2} ∅ P3 occurs twice

minimal counter-ex.

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4}

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ old counterexample

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

The same I , but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

¬P1 ∨ ¬P1 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Construction of Candidate Models Formally

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
⋃

C≻D
∆D

∆C :=







{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C ∆C .

We also simply write IN , or I , for I
≻
N if ≻ is either irrelevant or known

from the context.
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Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
..

..

.
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D with max(D) = B

all C with max(C) = A
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Some Properties of the Construction

Proposition 1.13:

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C .

(iii) Let D′ ≻ D � C . Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C .

36



Some Properties of the Construction

(iv) Let D′ ≻ D ≻ C . Then

ID |= C ⇒ ID′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C .

(v) D = C ∨ A produces A ⇒ IN 6|= C .
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Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose

that ⊥ 6∈ N. Then I≻N |= N.

Corollary 1.15:

Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.

38



Model Existence Theorem

Proof:

Suppose ⊥ 6∈ N, but I≻N 6|= N. Let C ∈ N minimal (in ≻) such that

I≻N 6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′ (i.e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C′∨A∨A
C′∨A

yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .
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Ordered Resolution with Selection

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem) one only

needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection
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Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of

clauses.
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Resolution Calculus Res
≻
S

Ordered Resolution with Selection:

C ∨ A D ∨ ¬A

C ∨ D

if (i) A ≻ C ;

(ii) nothing is selected in C by S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Ordered Factoring:

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

43



Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A ≻ B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds

strictly deterministically in this example. Generally, proof search will

still be non-deterministic but the search space will be much smaller

than with unrestricted resolution.
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