Decision Procedures for Verification

Part 1. Propositional Logic (3)

14.11.2016

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Last time

1.1 Syntax

- Language
 - propositional variables
 - logical symbols
 - ⇒ Boolean combinations
- Propositional Formulae

1.2 Semantics

- Valuations
- Truth value of a formula in a valuation
- Models, Validity, and Satisfiability
- Entailment and Equivalence

Canonical forms

- CNF and DNF
- Computing CNF/DNF by rewriting the formulae
- Structure-Preserving Translation for CNF
- Optimized translation using polarity

Decision Procedures for Satisfiability

 Simple Decision Procedures truth table method

Logik f. Informatiker Discrete Algebraic Structures

• The Resolution Procedure

started last time to be continued today

• The Davis-Putnam-Logemann-Loveland Algorithm

today

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \vee A \qquad \neg A \vee D}{C \vee D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \vee A \vee A}{C \vee A}$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Soundness and Completeness of Resolution

Theorem 1.10. Propositional resolution is sound.

Completeness:

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).
 - Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.
- The limit valuation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on propositional variables that is *total* and well-founded.
- 2. Extend \succ to an ordering \succ_L on literals:

$$[\neg]P \succ_L [\neg]Q$$
, if $P \succ_Q$
 $\neg P \succ_L P$

3. Extend \succ_L to an ordering \succ_C on clauses: $\succ_C = (\succ_L)_{\text{mul}}$, the multi-set extension of \succ_L .

Notation: \succ also for \succ_L and \succ_C .

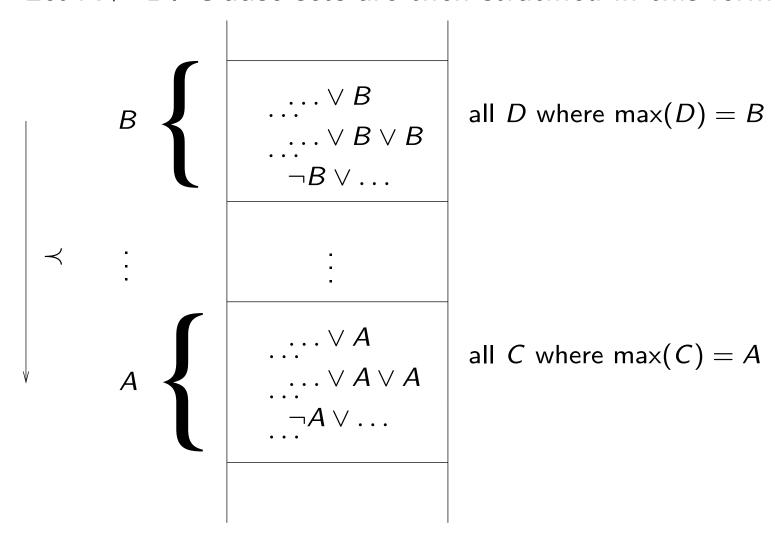
Multi-Set Orderings

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$S_1 \succ_{\mathsf{mul}} S_2 :\Leftrightarrow S_1 \neq S_2$$
 and $\forall m \in M : [S_2(m) > S_1(m)$ $\Rightarrow \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))]$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:



Construction of Interpretations

Given: set N of clauses, atom ordering \succ .

Wanted: Valuation A such that

- "many" clauses from N are valid in A;
- $A \models N$, if N is saturated and $\bot \not\in N$.

Construction according to \succ , starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec . We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.

In what follows, instead of referring to partial valuations A_C we will refer to partial interpretations I_C (the set of atoms which are true in the valuation A_C).

- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset)$.
- If C is false, one would like to change I_C such that C becomes true.

Example

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

Construction of *I*:

	clauses <i>C</i>	I _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \vee P_1$	Ø	$\{P_1\}$	
3	$P_1ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 ee P_2$	$\{P_1\}$	$\{P_2\}$	
5	$\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_3\}$	
6	$\neg P_1 \vee \neg P_1 \vee P_3 \vee P_3 \vee P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
8	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
9	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$I_C := \bigcup_{C \succ D} \Delta_D$$

$$\Delta_C := \left\{ egin{array}{ll} \{A\}, & ext{if } C \in \mathcal{N}, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ \emptyset, & ext{otherwise} \end{array} \right.$$

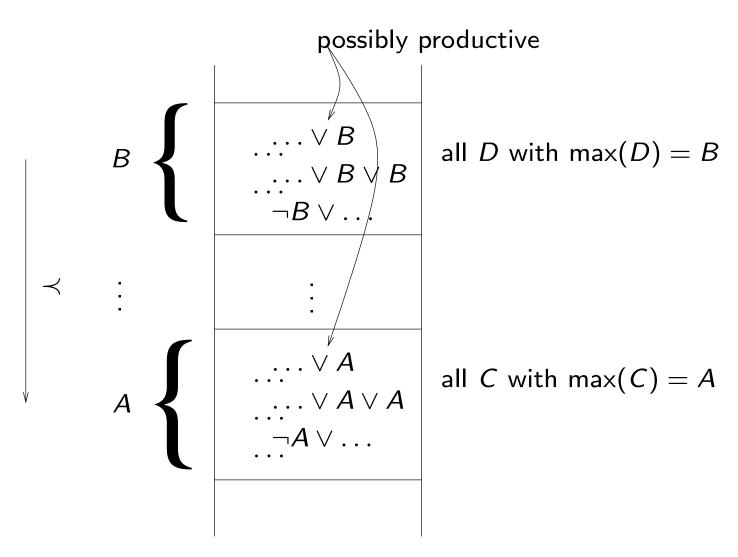
We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_{\mathcal{C}} \Delta_{\mathcal{C}}$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let A > B; producing a new atom does not affect smaller clauses.



Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):

Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\bot \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15:

Let N be saturated wrt. Res. Then $N \models \bot \Leftrightarrow \bot \in N$.

Model Existence Theorem

Proof:

Suppose $\bot \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively) $\Rightarrow I_N \models A$ and $I_N \not\models C'$ \Rightarrow some $D = D' \lor A \in N$ produces A. As $\frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ \Rightarrow contradicts minimality of C.

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Ordered Resolution with Selection

Ideas for improvement:

- 1. In the completeness proof (Model Existence Theorem) one only needs to resolve and factor maximal atoms
 - ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 - \Rightarrow order restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed
 - ⇒ choose a negative literal don't-care-nondeterministically
 - \Rightarrow selection

Selection Functions

A selection function is a mapping

 $S: C \mapsto \text{set of occurrences of } negative \text{ literals in } C$

Example of selection with selected literals indicated as X:

$$\neg A \lor \neg A \lor B$$

Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of clauses.

Resolution Calculus Res_S^{\succ}

Ordered Resolution with Selection:

$$\frac{C \vee A \qquad D \vee \neg A}{C \vee D}$$

- if (i) $A \succ C$;
 - (ii) nothing is selected in C by S;
 - (iii) $\neg A$ is selected in $D \lor \neg A$, or else nothing is selected in $D \lor \neg A$ and $\neg A \succeq \max(D)$.

Ordered Factoring:

$$\frac{C \vee A \vee A}{(C \vee A)}$$

if A is maximal in C and nothing is selected in C.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max(C)$.

Search Spaces Become Smaller

- $\begin{array}{ccc}
 1 & A \lor B \\
 2 & A \lor \Box B
 \end{array}$
- $3 \neg A \lor B$
- $4 \quad \neg A \lor | \neg B$
- 5 $B \vee B$ Res 1, 3
- 6 *B* Fact 5
- 7 $\neg A$ Res 6, 4
- 8 *A* Res 6, 2
- 9 ⊥ Res 8, 7

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Res₅: **Construction of Candidate Models**

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$I_C := \bigcup_{C \succ D} \Delta_D$$

$$\begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \text{and nothing is selected in } C \end{cases}$$

$$\emptyset, & \text{otherwise}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Model Existence Theorem

Theorem 1.14^s (Bachmair & Ganzinger):

Let \succ be a clause ordering, let N be saturated wrt. Res_S^{\succ} , and suppose that $\bot \not\in N$. Then $I_N^{\succ} \models N$.

Corollary 1.15^s :

Let N be saturated wrt. Res_S^{\succ} . Then $N \models \bot \Leftrightarrow \bot \in N$.

Model Existence Theorem

Proof:

Suppose $\bot \not\in N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1:
$$C = \neg A \lor C'$$

(i.e., the maximal atom occurs negatively or $\neg A$ is selected in C)

- \Rightarrow $I_N \models A$ and $I_N \not\models C'$
- \Rightarrow some $D = D' \lor A \in N$ produces A. As $\frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$
- \Rightarrow contradicts minimality of C.

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Decision Procedures for Satisfiability

 Simple Decision Procedures truth table method

Logik f. Informatiker Discrete Algebraic Structures

• The Resolution Procedure

• The Davis-Putnam-Logemann-Loveland Algorithm

now

1.7 The DPLL Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set *N* of clauses), check whether it is satisfiable (and optionally: output *one* solution, if it is satisfiable).

Satisfiability of Clause Sets

 $\mathcal{A} \models \mathcal{N}$ if and only if $\mathcal{A} \models \mathcal{C}$ for all clauses \mathcal{C} in \mathcal{N} .

 $\mathcal{A} \models C$ if and only if $\mathcal{A} \models L$ for some literal $L \in C$.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A}:\Pi \to \{0,1\}$).

We start with an empty valuation and try to extend it step by step to all variables occurring in N.

If A is a partial valuation, then literals and clauses can be true, false, or undefined under A.

A clause is true under A if one of its literals is true; it is false (or "conflicting") if all its literals are false; otherwise it is undefined (or "unresolved").

Unit Clauses

Observation:

Let A be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under A, then the following properties are equivalent:

- \bullet there is a valuation that is a model of N and extends A.
- ullet there is a valuation that is a model of N and extends $\mathcal A$ and makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:

Let A be a partial valuation and P a variable that is undefined under A. If P occurs only positively (or only negatively) in the unresolved clauses in N, then the following properties are equivalent:

- ullet there is a valuation that is a model of N and extends \mathcal{A} .
- there is a valuation that is a model of N and extends A and assigns true (false) to P.

P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

```
boolean DPLL(clause set N, partial valuation A) {
   if (all clauses in N are true under A) return true;
   elsif (some clause in N is false under A) return false;
   elsif (N contains unit clause P) return DPLL(N, A \cup \{P \mapsto 1\});
   elsif (N contains unit clause \neg P) return DPLL(N, \mathcal{A} \cup \{P \mapsto 0\});
   elsif (N contains pure literal P) return DPLL(N, A \cup \{P \mapsto 1\});
   elsif (N contains pure literal \neg P) return DPLL(N, \mathcal{A} \cup \{P \mapsto 0\});
   else {
       let P be some undefined variable in N;
       if (DPLL(N, A \cup \{P \mapsto 0\})) return true;
       else return DPLL(N, A \cup \{P \mapsto 1\});
}
```

The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty partial valuation A.

The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively; the backtrack stack is managed explicitly (it may be possible and useful to backtrack more than one level).

DPLL Iteratively

```
An iterative (and generalized) version:
status = preprocess();
if (status != UNKNOWN) return status;
while(1) {
    decide_next_branch();
    while(1) {
        status = deduce();
        if (status == CONFLICT) {
            blevel = analyze_conflict();
            if (blevel == 0) return UNSATISFIABLE;
            else backtrack(blevel); }
        else if (status == SATISFIABLE) return SATISFIABLE;
        else break;
    }
```

DPLL Iteratively

```
preprocess()
  preprocess the input (as far as it is possible without branching);
  return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()
  choose the right undefined variable to branch;
  decide whether to set it to 0 or 1;
  increase the backtrack level.
```

DPLL Iteratively

deduce()

make further assignments to variables (e.g., using the unit clause rule) until a satisfying assignment is found, or until a conflict is found, or until branching becomes necessary; return CONFLICT or SATISFIABLE or UNKNOWN.

DPLL Iteratively

```
analyze_conflict()
  check where to backtrack.

backtrack(blevel)
  backtrack to blevel;
  flip the branching variable on that level;
  undo the variable assignments in between.
```

Branching Heuristics

Choosing the right undefined variable to branch is important for efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed too frequently.

In general: choose variables that occur frequently.

The Deduction Algorithm

For applying the unit rule, we need to know the number of literals in a clause that are not false.

Maintaining this number is expensive, however.

The Deduction Algorithm

Better approach: "Two watched literals":

In each clause, select two (currently undefined) "watched" literals.

For each variable P, keep a list of all clauses in which P is watched and a list of all clauses in which $\neg P$ is watched.

If an undefined variable is set to 0 (or to 1), check all clauses in which P (or $\neg P$) is watched and watch another literal (that is true or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further branches.

Method: Learning:

If a conflicting clause is found, use the resolution rule to derive a new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses; therefore it may become necessary to delete some of them afterwards to save space.

Backjumping

Related technique:

```
non-chronological backtracking ("backjumping"):
```

If a conflict is independent of some earlier branch, try to skip that over that backtrack level.

Restart

Runtimes of DPLL-style procedures depend extremely on the choice of branching variables.

If no solution is found within a certain time limit, it can be useful to restart from scratch with another choice of branchings (but learned clauses may be kept).

A succinct formulation

```
State: M||F|, where:

- M partial assignment (sequence of literals),

some literals are annotated (L^d: decision literal)

- F clause set.
```

A succinct formulation

UnitPropagation

$$M||F,C\vee L\Rightarrow M,L||F,C\vee L$$
 if $M\models \neg C$, and L undef. in M

Decide

$$M||F \Rightarrow M, L^d||F$$

if L or $\neg L$ occurs in F, L undef. in M

Fail

$$M||F, C \Rightarrow Fail$$

if $M \models \neg C$, M contains no decision literals

Backjump

$$M, L^d, N||F \Rightarrow M, L'||F$$

if
$$\begin{cases} \text{ there is some clause } C \lor L' \text{ s.t.:} \\ F \models C \lor L', M \models \neg C, \\ L' \text{ undefined in } M \\ L' \text{ or } \neg L' \text{ occurs in } F. \end{cases}$$

Example

Assignment:	Clause set:	
Ø	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
P_1	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
P_1P_2	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1P_2P_3$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1P_2P_3P_4$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Decide)
$P_1 P_2 P_3 P_4 P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (UnitProp)
$P_1P_2P_3P_4P_5\neg P_6$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	\Rightarrow (Backtrack)
$P_1P_2P_3P_4\neg P_5$	$ \neg P_1 \lor P_2, \neg P_3 \lor P_4, \neg P_5 \lor \neg P_6, P_6 \lor \neg P_5 \lor \neg P_2$	•••

DPLL with learning

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn

 $M||F \Rightarrow M||F$, C if all atoms of C occur in F and $F \models C$

Forget

$$M||F,C\Rightarrow M||F \text{ if } F\models C$$

In these two rules, the clause C is said to be learned and forgotten, respectively.

Further Information

The ideas described so far heve been implemented in the SAT checker Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,

Proc. CADE-18, LNAI 2392, pp. 295-312, Springer, 2002.