Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

Collection of exercises: Part 1

Exercise 1. Assume $R \succ Q \succ P$. Let N_{1} be the following set of clauses:

$$
\begin{array}{cc}
\left(C_{1}\right) & \neg R \vee \neg P \\
\left(C_{2}\right) & Q \vee P \\
\left(C_{3}\right) & \neg Q \\
\left(C_{4}\right) & R \vee \neg P \vee Q
\end{array}
$$

Use the ordered resolution calculus Res $^{\succ}$ described in the lecture for checking the satisfiability of the set N_{1} of clauses.
Exercise 2. Assume $P \succ Q \succ R \succ S$. Let N_{2} be the following set of clauses:

$\left(C_{1}\right)$	$\neg Q \vee \neg P \vee \neg S$
$\left(C_{2}\right)$	$R \vee P$
$\left(C_{3}\right)$	$Q \vee S$
$\left(C_{4}\right)$	$\neg R \vee S$

(1) Define a selection function S such that this set of clauses is saturated w.r.t. the ordered resolution calculus with selection $\operatorname{Res}_{S}^{\succ}$. Justify your choice.
(2) Sort the clauses according to \succ_{C}.
(3) Construct a model of N_{2} using the canonical construction presented in the lecture.

Exercise 3. Give the definition of redundancy of a clause w.r.t. a set N of clauses.
Assume $P \succ S \succ Q \succ R$.
(1) Is the clause $P \vee \neg S$ redundant w.r.t. the set of clauses $\{\neg Q \vee P, R \vee \neg P, Q \vee \neg S\}$?
(2) Is the clause $\neg Q \vee R$ redundant w.r.t. the set of clauses $\{\neg Q \vee P, R \vee \neg P, Q \vee \neg S\}$?

Justify your answers.
Exercise 4. Let $\Sigma=(\{f / 1, g / 1, h / 1, a\},\{p / 2, q / 1, r / 2\})$. Let X be a set of variables, and assume that $\{x, y, z, u, v, w, s, t\} \subseteq X$.

Let \succ an ordering on ground atoms with the property that for all ground terms t_{1}, \ldots, t_{12}, $\neg p\left(t_{1}, t_{2}\right) \succ p\left(t_{3}, t_{4}\right) \succ \neg q\left(t_{5}, t_{6}\right) \succ q\left(t_{7}, t_{8}\right) \succ \neg r\left(t_{9}, t_{10}\right) \succ r\left(t_{11}, t_{12}\right)$.

Let N be the following set of clauses:

$$
\begin{array}{cc}
(1) & \neg r(f(x), y) \vee p(g(x), x) \\
\text { (2) } & \neg q(h(g(z))) \vee \neg p(z, u) \\
\text { (3) } & q(h(v)) \\
\text { (4) } & r(w, g(s)) \vee p(t, f(s))
\end{array}
$$

Use the ordered resolution calculus $\operatorname{Res}^{\succ}$ described in the lecture for checking the satisfiability of the set N of clauses.

Exercise 5. Consider the following formulae over a signature containing function symbols $\Omega=\{c / 0, f / 1\}$ and predicate symbols $\Pi=\{P / 1\}$:

- $F_{1}:=P(c)$
- $F_{2}:=\forall x(P(x) \rightarrow P(f(x)))$
- $F_{3}:=P(f(f(f(c))))$.

Use resolution to prove that $\left\{F_{1}, F_{2}\right\} \models F_{3}$.
Exercise 6. Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, a / 0, f / 1\}$ and $\Pi=\{p / 1\}$.
(1) How many Herbrand interpretations over Σ do exist? Explain briefly.
(2) How many Herbrand models over Σ has the following formula F ?

$$
F:=p(b) \wedge \forall x \neg p(f(f(x)))
$$

Justify your answer.

Exercise 7.

(a) Give definitions for the following fragments of first-order logic:

- The Bernays-Schönfinkel class;
- The Ackermann class.
- The monadic class.
(b) What is the idea in the proof of decidability for the Bernays-Schönfinkel class?
(c) To which of these classes do the following formulae belong (note that they can be in more than one, or in none of the classes above):
(1) $\exists y \forall x \quad((p(x) \vee r(x, y)) \wedge q(y))$
(2) $\forall x \exists y \exists u((p(x) \vee q(y)) \wedge(q(y) \vee p(u)))$
(3) $\exists z \forall x \exists y(p(x) \vee q(y)) \wedge q(z)$
(4) $\exists x \forall y((p(x) \vee r(y)) \wedge q(y))$
(5) $\forall x \exists y \forall z \exists u((p(x) \vee s(x, y, z)) \wedge(q(y) \vee p(u) \vee s(x, z, u)))$
(6) $\exists z \forall x \exists y((p(x) \vee r(x, y)) \wedge q(z))$

