Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
January 30, 2019

Exercises for "Decision Procedures for Verification"
 Exercise sheet 12

Exercise 12.1: (2 P)
Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=x \geq 1, R:=x \leq y, P:=x+x \leq 2$. Use a $\operatorname{DPLL}(\mathcal{T}) \operatorname{method}$ to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$
\begin{array}{cc}
\left(C_{1}\right) & \neg R \vee P \\
\left(C_{2}\right) & \neg Q \vee \neg P \\
\left(C_{4}\right) & R \vee P
\end{array}
$$

Exercise 12.2: ($2 P$)
Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=x \leq 1, R:=x \leq y, P:=x+x \leq 2$. Use a $\operatorname{DPLL}(\mathcal{T}) \operatorname{method}$ to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$
\begin{array}{cc}
\left(C_{1}\right) & \neg R \vee P \\
\left(C_{2}\right) & \neg Q \vee \neg P \\
\left(C_{4}\right) & R \vee P
\end{array}
$$

Exercise 12.3: ($4 p P$)
Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=y \leq 1, R:=x \leq y, P:=y+y \leq 2, S:=x \geq 1$. Use a $\operatorname{DPLL}(\mathcal{T})$ method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

For checking the satisfiability of conjunctions of inequalities in $L I(\mathbb{Q})$ use the Fourier-Motzkin method.

In what follows we consider the theory of arrays which will be defined in the lecture from 4.02.2019. We assume that the theory of indices \mathcal{T}_{i} is $L I(\mathbb{Z})$, and the theory of elements \mathcal{T}_{e} is $L I(\mathbb{Q})$.

Exercise 12.4: (2 P)

Which of the formulae below are (equivalent to formulae) in the array property fragment and which are not?
Justify your answer. (The universally quantified variables i, j are sort index; the indices k, l which are not universally quantified are considered to be constants of sort index)
(1) $\forall i(a[i+1]>a[i])$
(2) $\forall i(i<a[k] \rightarrow a[i]=a[k])$
(3) $\forall i, j\left(l_{1} \leq i \leq u_{1}<l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right.$
(3) $\forall i, j\left(l_{1}<i \leq u_{1}<l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right.$.

Exercise 12.5: (4P)
Consider the following array property formula:

$$
F: \forall i(l \leq i \leq u \rightarrow a[i]=b[i]) \wedge \neg \forall i(l \leq i \leq u+1 \rightarrow \text { write }(a, u+1, b[u+1])[i]=b[i])
$$

Apply to the formula F the Steps 1-6 of the transformation procedure for formulae in the array property fragment presented in the lecture from Monday, 4.02.2019.

Supplementary exercises:

Exercise 12.6: (5 P)
We say that a theory \mathcal{T} is stably infinite if for every quantifier-free formula ϕ, ϕ is satisfiable in \mathcal{T} iff ϕ is satisfiable in a (countably) infinite model of \mathcal{T}.
Let $\mathcal{T}_{1}, \mathcal{T}_{2}$ be stably infinite theories with disjoint signatures. Prove that their combination $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is stably infinite.

Please submit your solution until Wednesday, February 6, 2019 at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework DP" in the subject.
- Put it in the box in front of Room B 222.

