Decision Procedures for Verification

Combinations of Decision Procedures (2)

28.01.2019

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Last time

Combinations of Decision Procedures

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: $\mathcal{T}_{1}, \mathcal{T}_{2}$ first-order theories with signatures Σ_{1}, Σ_{2}
Assume that $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ (share only \approx)
P_{i} decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_{i}
ϕ quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto D N F(\phi)$
$\operatorname{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ. not problematic; requires linear time

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables. until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions

Implementation

ϕ conjunction of literals
Step 1. Purification: $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$, where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
How to implement Propagation?
Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i}$; make case split by adding some of these equalities to ϕ_{1}, ϕ_{2}. Repeat as long as possible.

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified
Soundness: If procedure answers "unsatisfiable" then ϕ is unsatisfiable

Proof: Assume that ϕ is satisfiable. Then $\phi_{1} \wedge \phi_{2}$ satisfiable.

- The procedure cannot answer "unsatisfiable" in Step 2.
- Let $(\mathcal{M}, \beta) \models \phi_{1} \wedge \phi_{2}$. Assume that $(\mathcal{M}, \beta) \models \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$

Then

$$
\begin{aligned}
& \left(\mathcal{M}_{\mid \Sigma_{1}}, \beta\right) \models \phi_{1} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \\
& \left(\mathcal{M}_{\mid \Sigma_{2}}, \beta\right) \models \phi_{2} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j}
\end{aligned}
$$

Guessing: $\bigwedge_{\left(c_{i}, c_{j}\right) \in E} c_{i} \approx c_{j} \wedge \bigwedge_{\left(c_{i}, c_{j}\right) \notin E} c_{i} \not \approx c_{j}$ "satisfiable arrangement".
Backtracking: Procedure answers satisfiable on the corresponding branch.

The Nelson-Oppen algorithm

Soundness:
Completeness:

Termination: only finitely many shared variables to be identified If procedure answers "unsatisfiable" then ϕ is unsatisfiable Under additional hypotheses

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"
A model of E_{1} satisfies $g(c) \approx h(c) \quad$ iff $\quad \exists e \in A$ s.t. $g(e)=h(e)$.
Then, for all $a \in A: \quad a=f_{A}(g(a), g(e))=f_{A}(g(a), h(e))=e$
$g(c) \approx h(c) \wedge k(c) \not \approx c \quad$ unsatisfiable

Completeness

Another example

\mathcal{T}_{1} theory admitting models of cardinality at most 2
\mathcal{T}_{2} theory admitting models of any cardinality

$$
\begin{aligned}
& f_{1} \in \Sigma_{1}, f_{2} \in \Sigma_{2} \quad \text { such that } \quad \mathcal{T}_{i} \not \models \forall x, y \quad f_{i}(x)=f_{i}(y) . \\
& \phi=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \\
& \phi_{1}=f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \quad \phi_{2}=f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right)
\end{aligned}
$$

The Nelson-Oppen procedure returns "satisfiable"
$\mathcal{T}_{1} \cup \mathcal{T}_{2} \models \forall x, y, z\left(f_{1}(x) \not \approx f_{1}(y) \wedge f_{2}(x) \not \approx f_{2}(z) \wedge f_{2}(y) \not \approx f_{2}(z)\right.$

$$
\rightarrow(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z))
$$

$f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \quad$ unsatisfiable

Completeness

Cause of incompleteness
There exist formulae satisfiable in finite models of bounded cardinality
Solution: Consider stably infinite theories.
\mathcal{T} is stably infinite iff for every quantifier-free formula ϕ
ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T}.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_{1}, ϕ_{2}
R equiv. relation assoc. with partition of $C \mapsto a r(C, R)=\bigwedge_{R(c, d)} c \approx d \wedge \bigwedge_{\neg R(c, d)} c \not \approx d$
Lemma. Assume that there exists a partition of C s.t. $\phi_{i} \wedge \operatorname{ar}(C, R)$ is \mathcal{T}_{i}-satisfiable. Then $\phi_{1} \wedge \phi_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiable.

Idea of proof: Let $\mathcal{A}_{i} \in \operatorname{Mod}\left(\mathcal{T}_{i}\right)$ s.t. $\mathcal{A}_{i} \models \phi_{i} \wedge \operatorname{ar}(C, R)$. Then $c_{A_{1}}=d_{A_{1}}$ iff $c_{A_{2}}=d_{A_{2}}$.
Let $i:\left\{c_{A_{1}} \mid c \in C\right\} \rightarrow\left\{c_{A_{2}} \mid c \in C\right\}, i\left(c_{A_{1}}\right)=c_{A_{2}}$ well-defined; bijection.
Stable infinity: can assume w.l.o.g. that $\mathcal{A}_{1}, \mathcal{A}_{2}$ have the same cardinality
Let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ bijection s.t. $h\left(c_{A_{1}}\right)=c_{A_{2}}$
Use h to transfer the Σ_{1}-structure on \mathcal{A}_{2}.

Theorem. If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_{1}, \mathcal{T}_{2}$ to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
(a) decide whether there is a disjunction of equalities between variables
(b) investigate different branches corresponding to disjunctions

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free conjunctive formula ϕ, $\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some j.
\mapsto No branching

Complexity

Main sources of complexity:
(i) transformation of the formula in DNF
(ii) propagation
\mathcal{T} is convex iff for every quantifier-free conjunctive formula ϕ, $\phi \models \bigvee_{i} x_{i} \approx y_{i}$ implies $\phi \models x_{j} \approx y_{j}$ for some j.
\mapsto No branching
Examples of convex theories:

- The theory of uninterpreted function symbols
- $L I(\mathbb{Q})$

Examples of theories which are not convex:

- $L I(\mathbb{Z})$

Complexity

Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in PTIME Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in PTIME

In general: non-deterministic procedure
Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be convex and stably infinite; $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ If satisfiability of conjunctions of literals in \mathcal{T}_{i} is in NP Then satisfiability of conjunctions of literals in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is in NP

From conjunctions to arbitrary combinations

Until now:
check satisfiability for conjunctions of literals

Question:
how to check satisfiability of sets of clauses?

Overview

Satisfiability w.r.t. theories

- Propositional logic
- resolution
- DPLL
- Ground formulae
- conjunctions of literals: specialized methods
- clauses: DPLL(T)
- Formulae with quantifiers
- reduction to SAT for ground formulae instantiation \Leftarrow NEXT WEEK
(situations when sound and complete)
- resolution $(\bmod T)$
3.6 The $\operatorname{DPLL}(\mathcal{T})$ algorithm

Reminder: Propositional SAT

The DPLL algorithm

A succinct formulation

State: $M \| F$,
where:

- M partial assignment (sequence of literals),
some literals are annotated (L^{d} : decision literal)
- F clause set.

A succinct formulation

UnitPropagation

$$
M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad \text { if } M \models \neg C \text {, and } L \text { undef. in } M
$$

Decide

$M\left\|F \Rightarrow M, L^{d}\right\| F$
if L or $\neg L$ occurs in F, L undef. in M
Fail
$M \| F, C \Rightarrow$ Fail
Backjump

$$
M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F
$$

Example

Assignment:
\emptyset
P_{1}^{d}
$P_{1}^{d} P_{2}$
$P_{1}^{d} P_{2} P_{3}^{d}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} P_{5}^{d}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} P_{5}^{d} \neg P_{6}$
$P_{1}^{d} P_{2} P_{3}^{d} P_{4} \neg P_{5}$

Clause set:
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (Decide)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (UnitProp)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2} \quad \Rightarrow$ (Backtrack)
$\| \neg P_{1} \vee P_{2}, \neg P_{3} \vee P_{4}, \neg P_{5} \vee \neg P_{6}, P_{6} \vee \neg P_{5} \vee \neg P_{2}$

DPLL with learning

The DPLL system with learning consists of the four transition rules of the Basic DPLL system, plus the following two additional rules:

Learn
$M\|F \Rightarrow M\| F, C$ if all atoms of C occur in F and $F \models C$
Forget
$M\|F, C \Rightarrow M\| F$ if $F \models C$

In these two rules, the clause C is said to be learned and forgotten, respectively.

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

Example 1: \mathcal{T} is Equality with Uninterpreted Functions (UIF):

$$
f(g(a)) \not \approx f(c) \vee g(a) \approx d, \quad g(a) \approx c, \quad c \not \approx d
$$

Example 2: for combined theories:

$$
A \approx \operatorname{write}(B, a+1,4), \quad \operatorname{read}(A, b+3) \approx 2 \vee f(a-1) \not \approx f(b+1)
$$

SAT Modulo Theories (SMT)

The "very eager" approach to SMT

Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory
- Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of \mathcal{T}-literals

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[P_{1}, P_{2}, P_{3}, \neg P_{4}\right.$]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

SAT Modulo Theories (SMT)

Optimized lazy approach
LA - Check T-consistency only of full propositional models
OLA - Check T-consistency of partial assignment while being built

LA - Given a T-inconsistent assignment M, add $\neg M$ as a clause
OLA

- Given a T-inconsistent assignment M, find an explanation
(a small T-inconsistent subset of M) and add it as a clause
LA - Upon a T-inconsistency, add clause and restart
OLA - Upon a T-inconsistency, do conflict analysis of the explanation and Backjump

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT

- Why "lazy"?

Theory information used only lazily, when checking \mathcal{T}-consistency of propositional models

- Characteristics:
+ Modular and flexible
- Theory information does not guide the search (only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

"Lazy" approaches to SMT

Lazy theory learning:
$M, L, M_{1}\|F \Rightarrow \emptyset\| F, \neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \quad$ if $\left\{\begin{array}{l}M, L, M_{1} \models F \\ \left\{L_{1}, \ldots, L_{n}\right\} \subseteq M \\ L_{1} \wedge \cdots \wedge L_{n} \wedge L \models \mathcal{T} \perp\end{array}\right.$

Lazy theory learning + no repetitions
$M, L, M_{1}\|F \Rightarrow \emptyset\| F, \neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \quad$ if $\left\{\begin{array}{l}\left\{L_{1}, \ldots, L_{n}\right\} \subseteq M \\ L_{1} \wedge \cdots \wedge L_{n} \wedge L \models \mathcal{T} \perp \\ \neg L_{1} \vee \cdots \vee \neg L_{n} \vee \neg L \notin F\end{array}\right.$

DPLL(T) Rules

UnitPropagation
$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and L undef. in M
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
if L occurs in F, L undef. in M
Fail
$M \| F, C \Rightarrow$ Fail
Backjump
$M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F$

Restart/Learn
$M\|F \Rightarrow \emptyset\| F, F^{\prime}$
TPropagation
$M\|F \Rightarrow M, L\| F$
if $M \models \neg C$, no backtrack possible
if $\left\{\begin{array}{l}\text { there is some clause } C \vee L^{\prime} \text { s.t.: } \\ F \models C \vee L^{\prime}, M \models \neg C, \\ L^{\prime} \text { undefined in } M \\ L^{\prime} \text { or } \neg L^{\prime} \text { occurs in } F .\end{array}\right.$
if $F \models F^{\prime}, F^{\prime}$ obtained from M, F
if $M \models_{\mathcal{T}} L$

DPLL(T) Example

Consider again same example with UIF:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

\emptyset

$$
\| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (UnitPropagation) }
$$

$$
P_{3} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (TPropagation) }
$$

$$
P_{3} P_{1} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (UnitPropagation) }
$$

$$
P_{3} P_{1} P_{2} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { (TPropagation) }
$$

$$
P_{3} P_{1} P_{2} P_{4} \quad \| \neg P_{1} \vee P_{2}, P_{3}, \neg P_{4} \quad \Rightarrow \text { fail }
$$

No search in this example

Termination

Idea: $\operatorname{DPLL}(T)$ terminates if no clause is learned infinitely many times, since only finitely many such new clauses (built over input literals) exist.

Theorem. There exists no infinite sequence of the form

$$
\emptyset \| F \Rightarrow S_{1} \Rightarrow S_{2} \ldots
$$

if no clause C is learned by Reset \& Learn/Lazy Theory Learning infinitely many times along a sequence.

A similar termination result holds also for the $\operatorname{DPLL}(T)$ approach with Theory Propagation.

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S_{1} \Rightarrow S_{2} \ldots$

Proof. (Idea) We define a well-founded strict partial ordering \succ on states, and show that each rule application $M\left\|F \Rightarrow M^{\prime}\right\| F^{\prime}$ is decreasing with respect to this ordering, i.e., $M\left\|F \succ M^{\prime}\right\| F^{\prime}$.

Let M be of the form $M_{0}, L_{1}, M_{1}, \ldots L_{p}, M_{p}$, where L_{1}, \ldots, L_{p} are all the decision literals of M. Similarly, let M^{\prime} be $M_{0}^{\prime}, L_{1}^{\prime}, M_{1}^{\prime}, \ldots L_{p^{\prime}}^{\prime}, M_{p^{\prime}}^{\prime}$.
Let N be the number of distinct atoms (propositional variables) in F.
(Note that p, p^{\prime} and the length of M and M^{\prime} are always smaller than or equal to N.)

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S 1 \Rightarrow \ldots$
Proof. (continued)
Let $m(M)$ be N - length (M) (nr. of literals missing in M for M to be total).
Define: $M_{0} L_{1} M_{1} \ldots L_{p} M_{p}\left\|F \succ M_{0}^{\prime} L_{1}^{\prime} M_{1}^{\prime} \ldots L_{p^{\prime}}^{\prime} M_{p^{\prime}}^{\prime}\right\| F^{\prime}$ if
(i) there is some i with $0 \leq i \leq p, p^{\prime}$ such that

$$
m\left(M_{0}\right)=m\left(M_{0}^{\prime}\right), \ldots m\left(M_{i-1}\right)=m\left(M_{i-1}^{\prime}\right), m\left(M_{i}\right)>m\left(M_{i}^{\prime}\right) \text { or }
$$

(ii) $m\left(M_{0}\right)=m\left(M_{0}^{\prime}\right), \ldots m\left(M_{p}\right)=m\left(M_{p}^{\prime}\right)$ and $m(M)>m\left(M^{\prime}\right)$.

Comparing the number of missing literals in sequences is a strict ordering (irreflexive and transitive) and it is well-founded, and hence this also holds for its lexicographic extension on tuples of sequences of bounded length.

No learning/forgetting: It is easy to see that all Basic DPLL rule applications are decreasing with respect to \succ if fail is added as an additional minimal element. (The rules UnitPropagate and Backjump decrease by case (i) of the definition and Decide decreases by case (ii).)

Termination

Theorem. There exist no infinite sequences of the form $\emptyset \| F \Rightarrow S 1 \Rightarrow \ldots$

Note: Combine learning with basic $\operatorname{DPLL}(\mathrm{T})$: no clause learned infinitely many times.
Forget: For this termination condition to be fulfilled, applying at least one rule of the Basic DPLL system between any two Learn applications does not suffice. It suffices if, in addition, no clause generated with Learning is ever forgotten.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow{ }^{*} M\right\| F^{\prime}$ then:
(1) All atoms in M and all atoms in F^{\prime} are atoms of F.
(2) M : no literal more than once, no complementary literals
(3) F^{\prime} is logically equivalent to F
(4) if $M=M_{0} L_{1} M_{1} \ldots L_{n} M_{n}$ where L_{i} all decision literals then $F, L_{1}, \ldots, L_{i} \models M_{i}$.

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then:
(1) All literals of F^{\prime} are defined in M
(2) There is no clause C in F^{\prime} such that $M \models \neg C$
(3) M is a model of F.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then M is a \mathcal{T}-model of F.

Theorem. The Lazy Theory learning DPLL system provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, if, and only if, F is satisfiable in \mathcal{T}.

Proof
(1) If $\emptyset \| F \Rightarrow{ }^{*}$ fail then there exists state $M \| F^{\prime}$ with $\emptyset\left\|F \Rightarrow{ }^{*} M\right\| F^{\prime} \Rightarrow$ fail, there is no decision literal in M and $M \models \neg C$ for some clause C in F. By the construction of $M, F \models M$, so $F \models \neg C$. Thus F is unsatisfiable.

To prove the converse, if $\emptyset \| F \not \vDash^{*}$ fail then by there must be a state $M \| F^{\prime}$ such that $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$. Then $M \models F$, so F is satisfiable.

Soundness, Correctness, Termination

Lemma. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, then M is a \mathcal{T}-model of F.

Theorem. The Lazy Theory learning DPLL system provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Lazy Theory Learning, if, and only if, F is satisfiable in \mathcal{T}.

Proof
2. If $\emptyset\left\|F \Rightarrow^{*} M\right\| F$ then F is satisfiable. Conversely, if $\emptyset\left\|F \not \neq^{*} M\right\| F$ then $\emptyset \| F \Rightarrow^{*}$ fail, so F is unsatisfiable.

Termination, Soundness and Completeness

$\operatorname{DPLL}(\mathcal{T})$ with (eager) theory propagation

Lemma. If $\emptyset\|F \Rightarrow M\| F$ then M is \mathcal{T}-consistent.
Proof. This property is true initially, and all rules preserve it, by the fact that $M \models \mathcal{T} L$ if, and only if, $M \cup \neg L$ is \mathcal{T}-inconsistent: the rules only add literals to M that are undefined in M, and Theory Propagate adds all literals L of F that are theory consequences of M, before any literal $\neg L$ making it \mathcal{T}-inconsistent can be added to M by any of the other rules.

Termination, Soundness and Completeness

$\operatorname{DPLL}(\mathcal{T})$ with (eager) theory propagation

Definition. A $\operatorname{DPLL}(\mathcal{T})$ procedure with Eager Theory Propagation for \mathcal{T} is any procedure taking an input CNF F and computing a sequence $\emptyset \| F \Rightarrow{ }^{*} S$ where S is a final state wrt. Theory Propagate and the Basic DPLL system.

Theorem The DPLL system with eager theory propagation provides a decision procedure for the satisfiability in \mathcal{T} of CNF formulae F, that is:

1. $\emptyset \| F \Rightarrow^{*}$ fail if, and only if, F is unsatisfiable in \mathcal{T}.
2. $\emptyset\left\|F \Rightarrow^{*} M\right\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Theory Propagate, if, and only if, F is satisfiable in \mathcal{T}.
3. If $\emptyset\|F \Rightarrow M\| F^{\prime}$, where $M \| F^{\prime}$ is a final state wrt the Basic DPLL system and Theory Propagate, then M is a \mathcal{T}-model of F.

Literature

Full proofs and further details can be found in:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli:
"Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)"

Journal of the ACM, Vol. 53, No. 6, November 2006, pp.937-977.

SMT tools

SAT problems
Given: conjunction ϕ of prop. clauses
Task: check if ϕ satisfiable
Method: DPLL

- deterministic choices first
unit resolution
pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting
backtracking
conflict-driven learning

SMT tools

SAT problems

Given: conjunction ϕ of prop. clauses Task: check if ϕ satisfiable

Method: DPLL

- deterministic choices first
unit resolution
pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting backtracking conflict-driven learning

SMT problems

Given: conjunction ϕ of clauses
Task: check if $\phi \models \mathcal{T} \perp$
Method: $\operatorname{DPLL}(\mathcal{T})$

- Boolean assignment found using DPLL
- ... and checked for \mathcal{T}-satisfiability
- the assignment can be partial and checked before splitting
- usual heuristics are used: non-chronological backtracking learning

SMT tools

SAT problems

Given: conjunction ϕ of prop. clauses
Task: check if ϕ satisfiable

Method: DPLL

- deterministic choices first unit resolution pure literal assignment
- case distinction (splitting)
- heuristics
selection criteria for splitting backtracking conflict-driven learning

SMT problems

Given: conjunction ϕ of clauses
Task: check if $\phi \models \mathcal{T} \perp$
Method: $\operatorname{DPLL}(\mathcal{T})$

- Boolean assignment found using DPLL
- ... and checked for \mathcal{T}-satisfiability
- the assignment can be partial and checked before splitting
- usual heuristics are used: non-chronological backtracking learning

Systems implementing such specialized satisfiability problems: Yices, Barcelogic Tools, CVC lite,haRVey,Math-SAT,Z3,...are called (S)atisfiability (M)odulo (T)heory solvers.

