
Decision Procedures for Verification

Combinations of Decision Procedures (2)

28.01.2019

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Last time

Combinations of Decision Procedures

2

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T

3

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

4

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions

5

Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.

6

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

7

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Proof: Assume that φ is satisfiable. Then φ1 ∧ φ2 satisfiable.

• The procedure cannot answer “unsatisfiable” in Step 2.

• Let (M, β) |= φ1 ∧ φ2. Assume that (M, β) |=
∧

(ci ,cj)∈E

ci ≈ cj ∧
∧

(ci ,cj) 6∈E

ci 6≈ cj

Then (M|Σ1
, β) |= φ1 ∧

∧

(ci ,cj)∈E

ci ≈ cj

(M|Σ2
, β) |= φ2 ∧

∧

(ci ,cj)∈E

ci ≈ cj

Guessing:
∧

(ci ,cj)∈E

ci ≈ cj ∧
∧

(ci ,cj) 6∈E

ci 6≈ cj “satisfiable arrangement”.

Backtracking: Procedure answers satisfiable on the corresponding branch.

8

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Completeness: Under additional hypotheses

9

Completeness

Example:
E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

10

Completeness

Example: E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

A model of E1 satisfies g(c) ≈ h(c) iff ∃e ∈ A s.t. g(e) = h(e).

Then, for all a ∈ A: a = fA(g(a), g(e)) = fA(g(a), h(e)) = e

g(c)≈h(c) ∧ k(c)6≈c unsatisfiable

11

Completeness

Another example

T1 theory admitting models of cardinality at most 2

T2 theory admitting models of any cardinality

f1 ∈ Σ1, f2 ∈ Σ2 such that Ti 6|= ∀x , y fi (x) = fi (y).

φ = f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

φ1 = f1(c1)6≈f1(c2) φ2 = f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

The Nelson-Oppen procedure returns “satisfiable”

T1 ∪ T2 |= ∀x , y , z(f1(x)6≈f1(y) ∧ f2(x)6≈f2(z) ∧ f2(y)6≈f2(z)

→ (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z))

f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3) unsatisfiable

12

Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

T is stably infinite iff for every quantifier-free formula φ

φ satisfiable in T iff φ satisfiable in an infinite model of T .

Note: This restriction is not mentioned in [Nelson Oppen 1979];

introduced by Oppen in 1980.

13

Completeness

Guessing version: C set of constants shared by φ1,φ2

R equiv. relation assoc. with partition of C 7→ar(C ,R) =
∧

R(c ,d)

c ≈ d ∧
∧

¬R(c ,d)

c 6≈ d

Lemma. Assume that there exists a partition of C s.t. φi ∧ ar(C ,R) is

Ti -satisfiable. Then φ1 ∧ φ2 is T1 ∪ T2-satisfiable.

Idea of proof: Let Ai ∈ Mod(Ti) s.t. Ai |=φi∧ar(C ,R). Then cA1=dA1 iff cA2=dA2 .

Let i : {cA1 | c ∈ C} → {cA2 | c ∈ C}, i(cA1) = cA2 well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A1,A2 have the same cardinality

Let h : A1 → A2 bijection s.t. h(cA1) = cA2

Use h to transfer the Σ1-structure on A2.

Theorem. If T1, T2 are both stably infinite and the shared signature is empty

then the Nelson-Oppen procedure is sound, complete and terminating.

Thus, it transfers decidability of ground satisfiability from T1, T2 to T1 ∪ T2.

14

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

(a) decide whether there is a disjunction of equalities between variables

(b) investigate different branches corresponding to disjunctions

15

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free conjunctive formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching

16

Complexity

Main sources of complexity:

(i) transformation of the formula in DNF

(ii) propagation

T is convex iff for every quantifier-free conjunctive formula φ,

φ |=
∨

i xi ≈ yi implies φ |= xj ≈ yj for some j .

7→ No branching

Examples of convex theories:

• The theory of uninterpreted function symbols

• LI (Q)

Examples of theories which are not convex:

• LI (Z)

17

Complexity

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in PTIME

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in PTIME

In general: non-deterministic procedure

Theorem. Let T1 and T2 be convex and stably infinite; Σ1 ∩ Σ2 = ∅

If satisfiability of conjunctions of literals in Ti is in NP

Then satisfiability of conjunctions of literals in T1 ∪ T2 is in NP

18

From conjunctions to arbitrary combinations

Until now:

check satisfiability for conjunctions of literals

Question:

how to check satisfiability of sets of clauses?

19

Overview

• Propositional logic

- resolution

- DPLL

• First-order logic

- resolution

Satisfiability w.r.t. theories

• Ground formulae

- conjunctions of literals:

specialized methods

- clauses: DPLL(T) ⇐ TODAY

• Formulae with quantifiers

- reduction to SAT for ground formulae

instantiation ⇐ NEXT WEEK

(situations when sound and complete)

- resolution (mod T)

20

3.6 The DPLL(T) algorithm

21

Reminder: Propositional SAT

The DPLL algorithm

22

A succinct formulation

State: M||F ,

where:

- M partial assignment (sequence of literals),

some literals are annotated (Ld : decision literal)

- F clause set.

23

A succinct formulation

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L or ¬L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , M contains no decision literals

Backjump

M, Ld ,N||F ⇒ M, L′||F if

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .

24

Example

Assignment: Clause set:

∅ ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

Pd
1 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

Pd
1 P2 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

Pd
1 P2P

d
3 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

Pd
1 P2P

d
3 P4 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Decide)

Pd
1 P2P

d
3 P4P

d
5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (UnitProp)

Pd
1 P2P

d
3 P4P

d
5 ¬P6 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2 ⇒ (Backtrack)

Pd
1 P2P

d
3 P4¬P5 ||¬P1 ∨ P2,¬P3 ∨ P4,¬P5 ∨ ¬P6,P6 ∨ ¬P5 ∨ ¬P2

25

DPLL with learning

The DPLL system with learning consists of the four transition rules of the

Basic DPLL system, plus the following two additional rules:

Learn

M||F ⇒ M||F ,C if all atoms of C occur in F and F |= C

Forget

M||F ,C ⇒ M||F if F |= C

In these two rules, the clause C is said to be learned and forgotten,

respectively.

26

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just

propositional logic, e.g:

• Software/Hardware verification needs reasoning about equality,

arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula

with respect to a background theory T

Example 1: T is Equality with Uninterpreted Functions (UIF):

f (g(a)) 6≈ f (c) ∨ g(a) ≈ d , g(a) ≈ c, c 6≈ d

Example 2: for combined theories:

A ≈ write(B, a+ 1, 4), read(A, b + 3) ≈ 2 ∨ f (a− 1) 6≈ f (b + 1)

27

SAT Modulo Theories (SMT)

The “very eager” approach to SMT

Method:

– translate problem into equisatisfiable propositional formula;

– use off-the-shelf SAT solver

• Why “eager”?

Search uses all theory information from the beginning

• Characteristics:

+ Can use best available SAT solver

− Sophisticated encodings are needed for each theory

− Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure

- Efficient theory solvers for conjunctions of T -literals

28

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT: Idea

Example: consider T = UIF and the following set of clauses:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

1. Send {¬P1∨P2, P3, ¬P4} to SAT solver

SAT solver returns model [¬P1,P3,¬P4]

Theory solver says ¬P1 ∧ P3 ∧ ¬P4 is T -inconsistent

2. Send {¬P1∨P2, P3, ¬P4, P1∨¬P3∨P4} to SAT solver

SAT solver returns model [P1,P2,P3,¬P4]

Theory solver says P1 ∧ P2 ∧ P3 ∧ ¬P4 is T -inconsistent

3. Send {¬P1∨P2,P3,¬P4,P1∨¬P3∨P4,¬P1∨¬P2∨¬P3∨P4} to SAT solver

SAT solver says UNSAT

29

SAT Modulo Theories (SMT)

Optimized lazy approach

LA • Check T-consistency only of full propositional models

OLA • Check T-consistency of partial assignment while being built

LA • Given a T-inconsistent assignment M, add ¬M as a clause

OLA • Given a T-inconsistent assignment M, find an explanation

(a small T-inconsistent subset of M) and add it as a clause

LA • Upon a T-inconsistency, add clause and restart

OLA • Upon a T-inconsistency, do conflict analysis of the

explanation and Backjump

30

SAT Modulo Theories (SMT)

“Lazy” approaches to SMT

• Why “lazy”?

Theory information used only lazily, when checking T -consistency of

propositional models

• Characteristics:

+ Modular and flexible

− Theory information does not guide the search

(only validates a posteriori)

Tools: CVC-Lite, ICS, MathSAT, TSAT+, Verifun, ...

31

“Lazy” approaches to SMT

Lazy theory learning:

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨ ¬Ln ∨¬L if

M, L,M1 |= F

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

Lazy theory learning + no repetitions

M, L,M1||F ⇒ ∅||F ,¬L1 ∨ · · · ∨¬Ln ∨¬L if

{L1, . . . , Ln} ⊆ M

L1 ∧ · · · ∧ Ln ∧ L |=T ⊥

¬L1 ∨ · · · ∨ ¬Ln ∨ ¬L 6∈ F

32

DPLL(T) Rules

UnitPropagation

M||F ,C ∨ L ⇒ M, L||F ,C ∨ L if M |= ¬C , and L undef. in M

Decide

M||F ⇒ M, Ld ||F if L occurs in F , L undef. in M

Fail

M||F ,C ⇒ Fail if M |= ¬C , no backtrack possible

Backjump

M, Ld ,N||F ⇒ M, L′||F if

there is some clause C ∨ L′ s.t.:

F |= C ∨ L′,M |= ¬C ,

L′ undefined in M

L′ or ¬L′ occurs in F .
Restart/Learn

M||F ⇒ ∅||F , F ′ if F |= F ′, F ′ obtained from M, F

TPropagation

M||F ⇒ M, L||F if M |=T L

33

DPLL(T) Example

Consider again same example with UIF:

f (g(a)) 6≈ f (c)
︸ ︷︷ ︸

¬P1

∨ g(a) ≈ d
︸ ︷︷ ︸

P2

, g(a) ≈ c
︸ ︷︷ ︸

P3

, c 6≈ d
︸ ︷︷ ︸

¬P4

∅ ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1 ||¬P1 ∨ P2,P3,¬P4 ⇒ (UnitPropagation)

P3P1P2 ||¬P1 ∨ P2,P3,¬P4 ⇒ (TPropagation)

P3P1P2P4 ||¬P1 ∨ P2,P3,¬P4 ⇒ fail

No search in this example

34

Termination

Idea: DPLL(T) terminates if no clause is learned infinitely many times,

since only finitely many such new clauses (built over input literals) exist.

Theorem. There exists no infinite sequence of the form

∅||F ⇒ S1 ⇒ S2...

if no clause C is learned by Reset & Learn/Lazy Theory Learning infinitely

many times along a sequence.

A similar termination result holds also for the DPLL(T) approach with

Theory Propagation.

35

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ S2...

Proof. (Idea) We define a well-founded strict partial ordering ≻ on states,

and show that each rule application M||F ⇒ M′||F ′ is decreasing with

respect to this ordering, i.e., M||F ≻ M′||F ′.

Let M be of the form M0, L1,M1, ...Lp ,Mp , where L1, ..., Lp are all the decision literals

of M. Similarly, let M′ be M′

0 , L
′

1,M
′

1 , ...L
′

p′
,M′

p′
.

Let N be the number of distinct atoms (propositional variables) in F .

(Note that p, p′ and the length of M and M′ are always smaller than or equal to N.)

36

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Proof. (continued)

Let m(M) be N − length(M) (nr. of literals missing in M for M to be total).

Define: M0L1M1 . . . LpMp ||F ≻ M′

0L
′

1M
′

1 . . . L
′

p′
M′

p′
||F ′ if

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M′

0), ...m(Mi−1) = m(M′

i−1),m(Mi) > m(M′

i) or

(ii) m(M0) = m(M′

0), ...m(Mp) = m(M′

p) and m(M) > m(M′).

Comparing the number of missing literals in sequences is a strict ordering (irreflexive

and transitive) and it is well-founded, and hence this also holds for its lexicographic

extension on tuples of sequences of bounded length.

No learning/forgetting: It is easy to see that all Basic DPLL rule applications are

decreasing with respect to ≻ if fail is added as an additional minimal element. (The

rules UnitPropagate and Backjump decrease by case (i) of the definition and Decide

decreases by case (ii).)

37

Termination

Theorem. There exist no infinite sequences of the form ∅||F ⇒ S1 ⇒ ...

Note: Combine learning with basic DPLL(T): no clause learned infinitely many times.

Forget: For this termination condition to be fulfilled, applying at least one rule of the

Basic DPLL system between any two Learn applications does not suffice. It suffices if,

in addition, no clause generated with Learning is ever forgotten.

38

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′ then:

(1) All atoms in M and all atoms in F ′ are atoms of F .

(2) M: no literal more than once, no complementary literals

(3) F ′ is logically equivalent to F

(4) if M = M0L1M1 . . . LnMn where Li all decision literals

then F , L1, . . . , Li |= Mi .

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then:

(1) All literals of F ′ are defined in M

(2) There is no clause C in F ′ such that M |= ¬C

(3) M is a model of F .

39

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

(1) If ∅||F ⇒∗ fail then there exists state M||F ′ with ∅||F ⇒∗ M||F ′ ⇒ fail , there

is no decision literal in M and M |= ¬C for some clause C in F . By the construction

of M, F |= M, so F |= ¬C . Thus F is unsatisfiable.

To prove the converse, if ∅||F 6⇒∗ fail then by there must be a state M||F ′ such that

∅||F ⇒∗ M||F ′. Then M |= F , so F is satisfiable.

40

Soundness, Correctness, Termination

Lemma. If ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic

DPLL system and Lazy Theory Learning, then M is a T -model of F .

Theorem. The Lazy Theory learning DPLL system provides a decision

procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

Proof

2. If ∅||F ⇒∗ M||F then F is satisfiable. Conversely, if ∅||F 6⇒∗ M||F then

∅||F ⇒∗ fail , so F is unsatisfiable.

41

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Lemma. If ∅||F ⇒ M||F then M is T -consistent.

Proof. This property is true initially, and all rules preserve it, by the fact

that M |=T L if, and only if, M ∪ ¬L is T -inconsistent: the rules only

add literals to M that are undefined in M, and Theory Propagate adds all

literals L of F that are theory consequences of M, before any literal ¬L

making it T -inconsistent can be added to M by any of the other rules.

42

Termination, Soundness and Completeness

DPLL(T) with (eager) theory propagation

Definition. A DPLL(T) procedure with Eager Theory Propagation for T is

any procedure taking an input CNF F and computing a sequence ∅||F ⇒∗ S

where S is a final state wrt. Theory Propagate and the Basic DPLL system.

Theorem The DPLL system with eager theory propagation provides a

decision procedure for the satisfiability in T of CNF formulae F , that is:

1. ∅||F ⇒∗ fail if, and only if, F is unsatisfiable in T .

2. ∅||F ⇒∗ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, if, and only if, F is satisfiable in T .

3. If ∅||F ⇒ M||F ′, where M||F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, then M is a T -model of F .

43

Literature

Full proofs and further details can be found in:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli:

“Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-

Logemann-Loveland Procedure to DPLL(T)”

Journal of the ACM, Vol. 53, No. 6, November 2006, pp.937-977.

44

SMT tools

SAT problems

Given: conjunction φ of prop. clauses
Task: check if φ satisfiable

Method: DPLL
• deterministic choices first

unit resolution
pure literal assignment

• case distinction (splitting)
• heuristics

selection criteria for splitting
backtracking
conflict-driven learning

45

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

46

SMT tools

SAT problems SMT problems

Given: conjunction φ of prop. clauses Given: conjunction φ of clauses
Task: check if φ satisfiable Task: check if φ |=T ⊥

Method: DPLL Method: DPLL(T)
• deterministic choices first • Boolean assignment found

unit resolution using DPLL
pure literal assignment • ... and checked for T -satisfiability

• case distinction (splitting) • the assignment can be partial
• heuristics and checked before splitting

selection criteria for splitting • usual heuristics are used:
backtracking non-chronological backtracking
conflict-driven learning learning

Systems implementing such specialized satisfiability problems: Yices, Barcelogic Tools,

CVC lite,haRVey,Math-SAT,Z3,...are called (S)atisfiability (M)odulo (T)heory solvers.

47

