Decision Procedures for Verification

Combinations of Decision Procedures (3)

4.02.2019

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Last time

Combinations of Decision Procedures

The Nelson/Oppen Procedure
(for theories with disjoint signature)
From conjunctions to arbitrary combinations
DPLL(T)

Satisfiability of formulae with quantifiers

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae containing (universally quantified) variables.

Examples

- check satisfiability of formulae in the Bernays-Schönfinkel class
- check whether a set of (universally quantified) Horn clauses entails a ground clause
- check whether a property is consequence of a set of axioms

Example 1: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is monotonely increasing and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $g(x)=f(x+x)$ then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and x is inserted before the first position i with $a[i]>x$ then the array remains increasingly sorted.

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

- Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).
- Function symbols: read, write.

$$
\begin{aligned}
& a(\text { read })=\text { Array } \times \text { Index } \rightarrow \text { Element } \\
& a(\text { write })=\text { Array } \times \text { Index } \times \text { Element } \rightarrow \text { Array }
\end{aligned}
$$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{aligned}
\operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & =\operatorname{read}(a, j) .
\end{aligned}
$$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{aligned}
\operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & =\operatorname{read}(a, j) .
\end{aligned}
$$

Fact: Undecidable in general.
Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

- Index guard a positive Boolean combination of atoms of the form $t \leq u$ or $t=u$ where t and u are either a variable or a ground term of sort Index

Example: $(x \leq 3 \vee x \approx y) \wedge y \leq z$ is an index guard
Example: $x+1 \leq c, \quad x+3 \leq y, \quad x+x \leq 2$ are not index guards.

- Array property formula [Bradley,Manna,Sipma'06] $(\forall i)\left(\varphi_{I}(i) \rightarrow \varphi_{V}(i)\right)$, where:
φ_{l} : index guard
φ_{V} : formula in which any universally quantified i occurs in a direct array read; no nestings
Example: $c \leq x \leq y \leq d \rightarrow a(x) \leq a(y)$ is an array property formula
Example: $x<y \rightarrow a(x)<a(y)$ is not an array property formula

Decision Procedure

(Rules should be read from top to bottom)
Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

$$
\frac{F[\text { write }(a, i, v)]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \quad \text { for fresh } a^{\prime}(\text { write })
$$

Given a formula F containing an occurrence of a write term write (a, i, v), we can substitute every occurrence of write (a, i, v) with a fresh variable a^{\prime} and explain the relationship between a^{\prime} and a.

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists i . G[i]]}{F[G[j]]} \text { for fresh } j \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula contains a negated array property.

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.

The main idea is to select a set of symbolic index terms on which to instantiate all universal quantifiers.

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set \mathcal{I} :

$$
\begin{aligned}
\mathcal{I}= & \{\lambda\} \cup \\
& \{t \mid \cdot[t] \in F 3 \text { such that } t \text { is not a universally quantified variable }\} \cup \\
& \{t \mid t \text { occurs as an evar in the parsing of index guards }\}
\end{aligned}
$$

(evar is any constant, ground term, or unquantified variable.)
This index set is the finite set of indices that need to be examined. It includes all terms t that occur in some read (a, t) anywhere in F (unless it is a universally quantified variable) and all terms t that are compared to a universally quantified variable in some index guard.
λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I}.

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[i] \rightarrow G[i]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

where n is the size of the list of quantified variables \bar{i}.

This is the key step.

It replaces universal quantification with finite conjunction over the index set. The notation $\bar{i} \in \mathcal{I}^{n}$ means that the variables \bar{i} range over all n-tuples of terms in \mathcal{I}.

Theories of arrays

Step 6: From the output F5 of Step 5, construct

$$
F 6: \quad F 5 \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

The new conjuncts assert that the variable λ introduced in Step 4 is unique: it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of $F 6$ using the decision procedure for the quantifier free fragment.

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

It contains one array property,

$$
\forall i . i \neq I \rightarrow a[i]=b[i]
$$

index guard: $i \neq I:=(i \leq I-1 \vee i \geq I+1) \quad$ value constraint: $a[i]=b[i]$

Step 1: The formula is already in NNF.
Step 2: We rewrite F as:

$$
\begin{aligned}
F 2: & \\
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

Step 2: We rewrite F as:
F2: $\quad a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right)
$$

$$
\begin{array}{rll}
\text { index guards: } & i \neq 1:=(i \leq 1-1 \vee i \geq 1+1) & \text { value constraint: } a[i]=b[i] \\
& j \neq 1:=(j \leq 1-1 \vee j \geq 1+1) & \text { value constraint: } a[i]=a^{\prime}[j]
\end{array}
$$

Step 3: F2 does not contain any existential quantifiers $\mapsto F$ F $=\mathrm{F}$ 2.
Step 4: The index set is

$$
\mathcal{I}=\{\lambda\} \cup\{k\} \cup\{I, I-1, I+1\}=\{\lambda, k, I, I-1, I+1\}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$
Step 3:
F3:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge\left(\forall j . j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Step 4: $\mathcal{I}=\{\lambda, k, I, I-1, I+1\}$

Step 5: we replace universal quantification as follows:
F5:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge \bigwedge_{i \in \mathcal{I}}(i \neq I \rightarrow a[i]=b[i]) \\
& \wedge a^{\prime}[I]=v \wedge \bigwedge_{i \in \mathcal{I}}\left(j \neq I \rightarrow a[j]=a^{\prime}[j]\right) .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\mathcal{I}=\{\lambda, k, I, I-1, I+1\}
$$

Step 5 (continued) Expanding produces:
$F 5^{\prime}$:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge \\
& (\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge(I \neq I \rightarrow a[I]=b[I]) \\
& (I-1 \neq I \rightarrow a[I-1]=b[I-1]) \wedge(I+1 \neq I \rightarrow a[I+1]=b[I+1]) \wedge \\
& a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge \\
& \left(I \neq I \rightarrow a[I]=a^{\prime}[I]\right) \wedge\left(I-1 \neq I \rightarrow a[I-1]=a^{\prime}[I-1]\right) \wedge \\
& \left(I+1 \neq I \rightarrow a[I+1]=a^{\prime}[I+1]\right) .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

$$
\mathcal{I}=\{\lambda\} \cup\{k\} \cup\{I, I-1, I+1\}=\{\lambda, k, I, I-1, I+1\}
$$

Step 5 (continued): Simplifying produces

$$
\begin{aligned}
F^{\prime \prime} 5: & \\
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] .
\end{aligned}
$$

Example

Consider the array property formula
$F:$ write $(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])$

Step 6 distinguishes λ from other members of I:
F6:

$$
\begin{aligned}
& a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\lambda \neq I \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq I \rightarrow a[k]=b[k]) \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge\left(\lambda \neq I \rightarrow a[\lambda]=a^{\prime}[\lambda]\right) \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] \\
& \wedge \lambda \neq k \wedge \lambda \neq I \wedge \lambda \neq I-1 \wedge \lambda \neq I+1
\end{aligned}
$$

Example

Consider the array property formula

$$
F: \text { write }(a, l, v)[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge(\forall i . i \neq I \rightarrow a[i]=b[i])
$$

Step 6 Simplifying, we have

$$
\begin{aligned}
F^{\prime} 6: & a^{\prime}[k]=b[k] \wedge b[k] \neq v \wedge a[k]=v \wedge a[\lambda]=b[\lambda] \\
& \wedge a[k]=b[k] \wedge a[I-1]=b[I-1] \wedge a[I+1]=b[I+1] \\
& \wedge a^{\prime}[I]=v \wedge a[\lambda]=a^{\prime}[\lambda] \\
& \wedge\left(k \neq I \rightarrow a[k]=a^{\prime}[k]\right) \wedge a[I-1]=a^{\prime}[I-1] \wedge a[I+1]=a^{\prime}[I+1] \\
& \wedge \lambda \neq k \wedge \lambda \neq I \wedge \lambda \neq I-1 \wedge \lambda \neq I+1 .
\end{aligned}
$$

We can use for instance $\operatorname{DPLL}(\mathrm{T})$.
Alternative: Case distinction. There are two cases to consider.
(1) If $k=l$, then $a^{\prime}[I]=v$ and $a^{\prime}[k]=b[k]$ imply $b[k]=v$, yet $b[k] \neq v$.
(2) If $k \neq l$, then $a[k]=v$ and $a[k]=b[k]$ imply $b[k]=v$, but again $b[k] \neq v$.

Hence, F'6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }}$ F.

Proof

(Soundness) Step 1-6 preserve satisfiability
($\mathrm{F} i$ is a logical consequence of $\mathrm{Fi}-1$).

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

$$
F 6: \quad F 5 \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

Assume that F6 is satisfiabile. Clearly F5 has a model.

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[i] \rightarrow G[i]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

Assume that $F 5$ is satisfiabile. Let $\mathcal{A}=\left(\mathbb{Z}\right.$, Elem, $\left.\left\{a_{A}\right\}_{a \in \operatorname{Arrays}}, \ldots\right)$ be a model for F 5 . Construct a model \mathcal{B} for $F 4$ as follows.

For $x \in \mathbb{Z}: I(x)(u(x))$ closest left (right) neighbor of x in \mathcal{I}.
$a_{\mathcal{B}}(x)= \begin{cases}a_{\mathcal{A}}(I(x)) & \text { if } x-I(x) \leq u(x)-x \text { or } u(x)=\infty \\ a_{\mathcal{A}}(u(x)) & \text { if } x-I(x)>u(x)-x \text { or } I(x)=-\infty\end{cases}$

Soundness and Completeness

Theorem (Soundness and Completeness)
Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays-equisatisfiable to }} \mathrm{F}$.

Proof (Completeness)
Step 3 Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists i . G[i]]}{F[G[j]]} \text { for fresh } j \text { (exists) }
$$

If F3 has model then F2 has model

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment. The output F6 of Step 6 is $T_{\text {arrays }}$-equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

$$
\frac{F[\text { write }(a, i, v)]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \quad \text { for fresh } a^{\prime}(\text { write })
$$

Given a formula F containing an occurrence of a write term write(a, i, v), we can substitute every occurrence of write (a, i, v) with a fresh variable a^{\prime} and explan the relationship between a^{\prime} and a.

If F2 has a model then F1 has a model.
Step 1: Put F in NNF: NNF F1 is equivalent to F.

Theories of arrays

Theorem (Complexity) Suppose ($T_{\text {index }} \cup T_{\text {elem }}$)-satisfiability is in NP. For sub-fragments of the array property fragment in which formulae have bounded-size blocks of quantifiers, $T_{\text {arrays }}$-satisfiability is NP-complete.

Proof NP-hardness is clear.
That the problem is in NP follows easily from the procedure: instantiating a block of n universal quantifiers quantifying subformula G over index set I produces $|I| \cdot n$ new subformulae, each of length polynomial in the length of G. Hence, the output of Step 6 is of length only a polynomial factor greater than the input to the procedure for fixed n.

Program verification

$$
\begin{aligned}
& \text { Example: Does BubBLESORT return } \\
& \left.\qquad \begin{array}{l}
\text { a sorted array? } \\
\text { int [] BubBLESort(int[] a) }\{ \\
\text { int } i, j, t ; \\
\text { for }(i:=|a|-1 ; i>0 ; i:=i-1)\{ \\
\quad \text { for }(j:=0 ; j<i ; j:=j+1)\{ \\
\quad \text { if }(a[j]>a[j+1])\{t:=a[j] ; \\
\\
\qquad a[j]:=a[j+1] ; \\
\\
\text { \}\} return } a\}
\end{array} \quad a[j+1]:=t\right\} ;
\end{aligned}
$$

Program Verification

```
-1\leqi< |a|^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
```

```
-1\leqi< |a|^0\leqj\leqi^
```

-1\leqi< |a|^0\leqj\leqi^
partitioned(a, 0,i,i+1, |a| - 1)^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
sorted(a,i, |a| - 1)
partitioned(a, 0,j-1,j,j) C C2

```
partitioned(a, 0,j-1,j,j) C C2
```

> Example: Does BubbleSort return a sorted array?

Generate verification conditions and prove that they are valid Predicates:

- $\operatorname{sorted}(a, l, u): \quad \forall i, j(I \leq i \leq j \leq u \rightarrow a[i] \leq a[j])$
- partitioned $\left(a, I_{1}, u_{1}, l_{2}, u_{2}\right): \quad \forall i, j\left(I_{1} \leq i \leq u_{1} \leq I_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right)$

Program Verification

```
-1\leqi< |a|^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i, |a| - 1)
```

```
-1\leqi< |a|^0\leqj\leqi^
```

-1\leqi< |a|^0\leqj\leqi^
partitioned(a, 0,i,i+1, |a| - 1)^
partitioned(a, 0,i,i+1, |a| - 1)^
sorted(a,i,|a| - 1)
sorted(a,i,|a| - 1)
partitioned(a, 0,j - 1,j,j) C C2

```
partitioned(a, 0,j - 1,j,j) C C2
```


Example: Does BubbleSort return

 a sorted array?$$
\begin{aligned}
& \text { int [] BubbleSort(int[] a) \{ } \\
& \text { int } i, j, t ; \\
& \text { for }(i:=|a|-1 ; i>0 ; i:=i-1)\{ \\
& \quad \text { for }(j:=0 ; j<i ; j:=j+1)\{ \\
& \quad \text { if }(a[j]>a[j+1])\{t:=a[j] \\
& \qquad \begin{array}{l}
a[j]:=a[j+1] ; \\
\\
\text { \}\} return } a\}
\end{array}
\end{aligned}
$$

Generate verification conditions and prove that they are valid Predicates:

- $\operatorname{sorted}(a, I, u): \quad \forall i, j(I \leq i \leq j \leq u \rightarrow a[i] \leq a[j])$
- partitioned $\left(a, l_{1}, u_{1}, l_{2}, u_{2}\right): \quad \forall i, j\left(I_{1} \leq i \leq u_{1} \leq l_{2} \leq j \leq u_{2} \rightarrow a[i] \leq a[j]\right)$

To prove: $C_{2}(a) \wedge$ Update $\left(a, a^{\prime}\right) \rightarrow C_{2}\left(a^{\prime}\right)$

Another Situation

Insertion of an element c in a sorted array a of length n

$$
\begin{aligned}
& \text { for }(i:=1 ; i \leq n ; i:=i+1)\{ \\
& \text { if } a[i] \geq c\{n:=n+1 \\
& \text { for }(j:=n ; j>i ; j:=j-1)\{a[i]:=a[i-1]\} \\
& a[i]:=c \text {; return } a \\
& \text { \}\} } a[n+1]:=c \text {; return } a
\end{aligned}
$$

Task:
If the array was sorted before insertion it is sorted also after insertion.
$\operatorname{Sorted}(a, n) \wedge \operatorname{Update}\left(a, n, a^{\prime}, n^{\prime}\right) \wedge \neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \models \mathcal{T} \perp ?$

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.
$\operatorname{Sorted}(a, n) \wedge \operatorname{Update}\left(a, n, a^{\prime}, n^{\prime}\right) \wedge \neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \models \mathcal{T} \perp$?

$$
\begin{array}{ll}
\text { Sorted }(a, n) & \forall i, j(1 \leq i \leq j \leq n \rightarrow a[i] \leq a[j]) \\
\text { Update }\left(a, n, a^{\prime}, n^{\prime}\right) & \forall i\left((1 \leq i \leq n \wedge a[i]<c) \rightarrow a^{\prime}[i]=a[i]\right) \\
& \forall i\left(\left(c \leq a(1) \rightarrow a^{\prime}[1]:=c\right)\right. \\
& \forall i\left(\left(a[n]<c \rightarrow a^{\prime}[n+1]:=c\right)\right. \\
& \forall i\left((1 \leq i-1 \leq i \leq n \wedge a[i-1]<c \wedge a[i] \geq c) \rightarrow\left(a^{\prime}[i]=c\right)\right. \\
& \forall i\left(\left(1 \leq i-1 \leq i \leq n \wedge a[i-1] \geq c \wedge a[i] \geq c \rightarrow a^{\prime}[i]:=a[i-1]\right)\right. \\
& n^{\prime}:=n+1
\end{array}
$$

$\left.\neg \operatorname{Sorted}\left(a^{\prime}, n^{\prime}\right) \quad \exists k, I\left(1 \leq k \leq I \leq n^{\prime} \wedge a^{\prime} k\right]>a^{\prime}[/]\right)$

Beyond the array property fragment

Extension: New arrays defined by case distinction $-\operatorname{Def}\left(f^{\prime}\right)$

$$
\begin{aligned}
\forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow f^{\prime}(\bar{x})=s_{i}(\bar{x})\right) & i \in I, \text { where } \phi_{i}(\bar{x}) \wedge \phi_{j}(\bar{x}) \models \mathcal{T}_{0} \perp \text { for } i \neq j(1) \\
\forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow t_{i}(\bar{x}) \leq f^{\prime}(\bar{x}) \leq s_{i}(\bar{x})\right) & i \in I, \text { where } \phi_{i}(\bar{x}) \wedge \phi_{j}(\bar{x}) \models \mathcal{T}_{0} \perp \text { for } i \neq j(2)
\end{aligned}
$$

where s_{i}, t_{i} are terms over the signature Σ such that $\mathcal{T}_{0} \models \forall \bar{x}\left(\phi_{i}(\bar{x}) \rightarrow t_{i}(\bar{x}) \leq s_{i}(\bar{x})\right)$ for all $i \in I$.
$\mathcal{T}_{0} \subseteq \mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right)$ has the property that for every set G of ground clauses in which there are no nested applications of f^{\prime} :

$$
\mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right) \wedge G \models \perp \quad \text { iff } \quad \mathcal{T}_{0} \wedge \operatorname{Def}\left(f^{\prime}\right)[G] \wedge G
$$

(sufficient to use instances of axioms in $\operatorname{Def}\left(f^{\prime}\right)$ which are relevant for G)

- Some of the syntactic restrictions of the array property fragment can be lifted

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \mathcal{E} \vee \mathcal{C} ; \quad \mathcal{E}$ contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_{1}\left(f_{2}\left(\ldots f_{n}(p)\right)\right)$ occurs in axiom, the axiom also contains:

$$
\left.p=\operatorname{null} \vee f_{n}(p)=\text { null } \vee \cdots \vee f_{2}\left(\ldots f_{n}(p)\right)\right)=\text { null }
$$

Example: doubly-linked lists; ordered elements

$$
\begin{aligned}
& \forall p(p \neq \text { null } \wedge p . \mathrm{next} \neq \text { null } \rightarrow \text { p.next.prev }=p) \\
& \forall p(p \neq \text { null } \wedge p \text {. prev } \neq \text { null } \rightarrow p . \text { prev.next }=p) \\
& \forall p(p \neq \text { null } \wedge p . \text { next } \neq \text { null } \rightarrow p . \text { info } \leq p . \text { next.info })
\end{aligned}
$$

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields ($p \rightarrow s$);
- axioms: $\forall p \mathcal{E} \vee \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_{1}\left(f_{2}\left(\ldots f_{n}(p)\right)\right)$ occurs in axiom, the axiom also contains:

$$
\left.p=\operatorname{null} \vee f_{n}(p)=\text { null } \vee \cdots \vee f_{2}\left(\ldots f_{n}(p)\right)\right)=\text { null }
$$

Theorem. K set of clauses in the fragment above. Then for every set G of ground clauses, $(K \cup G) \cup \mathcal{T}_{s} \vDash \perp$ iff $K^{[G]} \cup \mathcal{T}_{s} \vDash \perp$ where $K^{[G]}$ is the set of instances of K in which the variables are replaced by subterms in G.

Example: A theory of doubly-linked lists

$\forall p(p \neq$ null $\wedge p$.next \neq null $\rightarrow p$.next. prev $=p)$
$\forall p(p \neq$ null $\wedge p . \operatorname{prev} \neq$ null $\rightarrow p$. .prev. next $=p)$
$\wedge c \neq$ null $\wedge c$. next \neq null $\wedge d \neq$ null $\wedge d$. next \neq null $\wedge c$. next $=d$. next $\wedge c \neq d \quad \vDash \perp$

Example: A theory of doubly-linked lists

$(c \neq$ null $\wedge c$. next \neq null $\rightarrow c$. next.prev $=c) \quad(c$. next \neq null $\wedge c$. next.next \neq null $\rightarrow c$. next.next.prev $=c . n e x$ $(d \neq$ null $\wedge d$. next \neq null $\rightarrow d$. next.prev $=d) \quad(d$. next \neq null $\wedge d$. next.next \neq null $\rightarrow d$. next.next.prev $=d$. ne
$\wedge c \neq$ null $\wedge c$. next \neq null $\wedge d \neq$ null $\wedge d$. next \neq null $\wedge c$. next $=d$. next $\wedge c \neq d \quad \perp$

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio $\geq p$.next.prio

$$
c . \text { prio }=x, c . \text { next }=\text { null }
$$

for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg \operatorname{First}^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p \text {.next }
$$

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio } \leq x \text { then } p . \text { next }^{\prime}=c, c . \text { next }^{\prime}=p . \text { nex }
$$

Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio \geq p.next.prio
c.prio $=x, c$.next $=$ null
for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg$ First $^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p . \text { next }
$$

p.next \neq null $\wedge p$.next.prio $\leq x$ then p. next $^{\prime}=c, c$. next $^{\prime}=p$.next
Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: p.next \neq null $\rightarrow p$.prio \geq p.next.prio
c.prio $=x, c$.next $=$ null
for all $p \neq c$ do
if p.prio $\leq x$ then if $\operatorname{First}(p)$ then c. next $^{\prime}=p$, First $^{\prime}(c), \neg \operatorname{First}^{\prime}(p)$ endif; p. next $^{\prime}=p$.next p.prio $>x$ then case p.next $=$ null then p. next $^{\prime}:=c, c . n e x t^{\prime}=$ null

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio }>x \text { then } p . \text { next }^{\prime}=p . \text { next }
$$

$$
p . \text { next } \neq \text { null } \wedge p \text {.next.prio } \leq x \text { then } p . \text { next }^{\prime}=c, c . \text { next }^{\prime}=p . \text { nex }
$$

Verification task: After insertion list remains sorted

Example: List insertion

Initially list is sorted: $\forall p$ (p.next \neq null $\rightarrow p$.prio $\geq p$.next. prio $)$

```
\(\forall p\left(p \neq\right.\) null \(\wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge\) First \((p) \rightarrow \operatorname{next}^{\prime}(c)=p \wedge\) First \(\left.^{\prime}(c)\right)\)
\(\forall p\left(p \neq\right.\) null \(\left.\wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge \operatorname{First}(p) \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p) \wedge \neg \operatorname{First}^{\prime}(p)\right)\)
\(\forall p\left(p \neq\right.\) null \(\left.\wedge p \neq c \wedge \operatorname{prio}(p) \leq x \wedge \neg \operatorname{First}(p) \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p)\right)\)
\(\forall p\left(p \neq\right.\) null \(\wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p)=\operatorname{null} \rightarrow \operatorname{next}^{\prime}(p)=c\)
\(\forall p\left(p \neq \operatorname{null} \wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p)=\operatorname{null} \rightarrow \operatorname{next}^{\prime}(c)=\right.\) null \()\)
\(\forall p\left(p \neq \operatorname{null} \wedge p \neq c \wedge \operatorname{prio}(p)>x \wedge \operatorname{next}(p) \neq \operatorname{null} \wedge \operatorname{prio}(\operatorname{next}(p))>x \rightarrow \operatorname{next}^{\prime}(p)=\operatorname{next}(p)\right)\)
\(\forall p(p \neq\) null \(\wedge p \quad\) We only need to use instances in which variables are \(\quad p)=c\)
\(\forall p(p \neq\) null \(\wedge p \quad\) replaced by ground subterms occurring in the problem \(\quad(c)=\operatorname{next}(p))\)
```

To check: Sorted (next, prio) \wedge Update $\left(\right.$ next, next $\left.^{\prime}\right) \wedge p_{0}$. next \neq null $\wedge p_{0}$. prio $\nsupseteq p_{0}$. next ${ }^{\prime}$. prio $\models \perp$

Example: List insertion

$$
\mathcal{T}_{1}=\mathcal{T}_{0} \cup \operatorname{Sorted}(\text { next })
$$

$$
\mathcal{T}_{0}=(\text { Lists, next })
$$

To show:

$\mathcal{T}_{2} \cup \underbrace{\neg \text { Sorted }\left(\text { next }^{\prime}\right)}_{G} \models \perp$

Example: List insertion

Example: List insertion

$$
\begin{gathered}
\text { To show: } \\
\mathcal{T}_{2} \cup \underbrace{\neg \text { Sorted }\left(\text { next }^{\prime}\right)}_{G} \models \perp \\
\Downarrow \\
\mathcal{T}_{1} \cup G^{\prime}(\text { next }) \models \perp \\
\Downarrow \\
\mathcal{T}_{0} \cup G^{\prime \prime} \models \perp
\end{gathered}
$$

More general concept

Local Theory Extensions

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

$$
\operatorname{Mon}(f) \quad \forall i, j(i<j \rightarrow f(i)<f(j))
$$

Problems:

- A prover for $\mathbb{R} \cup \mathbb{Z}$ does not know about f
- A prover for first-order logic may have problems with the reals and integers
- DPLL(T) cannot be used (Mon, \mathbb{Z}, \mathbb{R} : non-disjoint signatures)
- SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon $(f)[G]$ without loss of completeness
hierarchical/modular reasoning: reduce to checking satisfiability of a set of constraints over $\mathbb{R} \cup \mathbb{Z}$

Local theory extensions

Solution: Local theory extensions
\mathcal{K} set of equational clauses; \mathcal{T}_{0} theory; $\mathcal{T}_{1}=\mathcal{T}_{0} \cup \mathcal{K}$

$$
\begin{array}{ll}
\text { (Loc) } & \mathcal{T}_{0} \subseteq \mathcal{T}_{1} \text { is local, if for ground clauses } G \\
& \mathcal{T}_{0} \cup \mathcal{K} \cup G \models \perp \text { iff } \mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \text { has no (partial) model }
\end{array}
$$

Various notions of locality, depending of the instances to be considered: stable locality, order locality; extended locality.

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$f(a)=f(b)+1$
	$\forall i, j(i<j \rightarrow f(i)<f(j))$

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension	
$a<b$	$f(a)=f(b)+1$	Solution 1:
	$a<b \rightarrow f(a)<f(b)$	SMT $(\mathbb{R} \cup \mathbb{Z} \cup$ UIF $)$
	$b<a \rightarrow f(b)<f(a)$	

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances
Add congruence axioms. Replace pos-terms with new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension	
$a<b$	$f(a)=f(b)+1$	Solution 2:
	$a<b \rightarrow f(a)<f(b)$	Hierarchical reasoning
	$b<a \rightarrow f(b)<f(a)$	
	$a=b \rightarrow f(a)=f(b)$	

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \vDash \perp
$$

Extension is local \mapsto replace axiom with ground instances
Replace f-terms with new constants
Add definitions for the new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$a_{1}=b_{1}+1$
	$a<b \rightarrow a_{1}<b_{1}$
	$b<a \rightarrow b_{1}<a_{1}$
	$a=b \rightarrow a_{1}=b_{1}$

Example: Strict monotonicity

$$
\mathbb{R} \cup \mathbb{Z} \cup \operatorname{Mon}(f) \cup \underbrace{(a<b \wedge f(a)=f(b)+1)}_{G} \models \perp
$$

Extension is local \mapsto replace axiom with ground instances
Replace f-terms with new constants
Add definitions for the new constants

Base theory $(\mathbb{R} \cup \mathbb{Z})$	Extension
$a<b$	$a_{1}=f(a)$
$a_{1}=b_{1}+1$	$b_{1}=f(b)$
$a<b \rightarrow a_{1}<b_{1}$	
$b<a \rightarrow b_{1}<a_{1}$	
$a=b \rightarrow a_{1}=b_{1}$	

Reasoning in local theory extensions

$$
\text { Locality: } \quad \mathcal{T}_{0} \cup \mathcal{K} \cup G \models \perp \quad \text { iff } \quad \mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \models \perp
$$

Problem: Decide whether $\mathcal{T}_{0} \cup \mathcal{K}[G] \cup G \models \perp$
Solution 1: Use $\operatorname{SMT}\left(\mathcal{T}_{0}+U I F\right)$: possible only if $\mathcal{K}[G]$ ground

Solution 2: Hierarchic reasoning [VS'05]
reduce to satisfiability in \mathcal{T}_{0} : applicable in general
\mapsto parameterized complexity

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Number of trains:

$$
n \geq 0 \quad \mathbb{Z}
$$

Minimum and maximum speed of trains: $0 \leq \min <\max \quad \mathbb{R}$
Minimum secure distance:
$l_{\text {alarm }}>0$
\mathbb{R}
Time between updates:
$\Delta t>0 \quad \mathbb{R}$
Train positions before and after update:

$$
\operatorname{pos}(i), \operatorname{pos}^{\prime}(i) \quad: \mathbb{Z} \rightarrow \mathbb{R}
$$

Example

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Update(pos, pos') :

- $\forall i\left(i=0 \rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$
- $\forall i\left(0<i<n \wedge \operatorname{pos}(i-1)>0 \wedge \operatorname{pos}(i-1)-\operatorname{pos}(i) \geq l_{\text {alarm }}\right.$ $\left.\rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$

Example

Safety property: No collisions

$$
\text { Safe(pos): } \forall i, j(i<j \rightarrow \operatorname{pos}(i)>\operatorname{pos}(j))
$$

$$
\text { Inductive invariant: } \quad \text { Safe }(\text { pos }) \wedge \text { Update }\left(\text { pos, } \operatorname{pos}^{\prime}\right) \wedge \neg \operatorname{Safe}\left(\operatorname{pos}^{\prime}\right) \models \mathcal{T}_{S} \perp
$$

where \mathcal{T}_{S} is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos' : $\mathbb{Z} \rightarrow \mathbb{R}$

Our idea: Use chains of "instantiation" + reduction.

Example

$$
\mathcal{T}_{0}=\mathbb{R} \cup \mathbb{Z}
$$

To show:

Example

To show:

$$
\mathcal{T}_{1}=\mathcal{T}_{0} \cup \text { Safe (pos) }
$$

$$
\mathcal{T}_{1} \cup G^{\prime}(\mathrm{pos}) \models \perp
$$

$$
\Downarrow
$$

$$
\mathcal{T}_{0}=\mathbb{R} \cup \mathbb{Z}
$$

$$
\mathcal{T}_{0} \cup G^{\prime \prime} \models \perp
$$

$$
\Phi\left(c, \bar{c}_{\mathrm{pos}^{\prime}}, \bar{d}_{\mathrm{pos}}, n, l_{\text {alarm }}, \min , \max , \Delta t\right) \models \perp
$$

Method 1: SAT checking/ Counterexample generation
Method 2: Quantifier elimination
relationships between parameters which guarantee safety

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
- Emergency messages
- Durations
- Specification language: CSP-OZ-DC
- Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC \mapsto Transition constr. \mapsto Decision procedures (H-PILoT)

Example 2: Parametric topology

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: - General constraints on parameters which guarantee safety

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:
p_{1} : trains

- 2-sorted pointers
p_{2} : segments

- scalar fields $\left(f: p_{i} \rightarrow \mathbb{R}, g: p_{i} \rightarrow \mathbb{Z}\right)$
- updates efficient decision procedures (H-PiLoT)

Incoming and outgoing trains


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\operatorname{length}(\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{lmax}(\operatorname{segm}(t))\)
\(\operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)=\operatorname{tid}(t)\)
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{lmax}(\operatorname{segm}(t)), \operatorname{Imax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right.\)
\(\operatorname{pos}(t) \geq\) length \((\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)\)
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\) decmax, 0\()\)
```


Incoming and outgoing trains

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')
Assume: $s_{1} \neq$ null $_{s}, t_{1} \neq$ null $_{t}, \operatorname{train}(s) \neq t_{1}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{idt}\left(t_{1}\right)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{next}_{t}(t)=\operatorname{null} t_{t}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=t_{1} \wedge \operatorname{next}^{\prime}\left(t_{1}\right)=\operatorname{null}_{t}$ $t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right), \operatorname{next}_{t}(t) \neq$ null $_{t}, \operatorname{ids}\left(\operatorname{segm}\left(\operatorname{next}_{t}(t)\right)\right) \leq \operatorname{ids}\left(s_{1}\right)$
$\rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t)) \geq \operatorname{ids}\left(s_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$

Incoming and outgoing trains

Safety property

Safety property we want to prove: no two trains ever occupy the same track segment:

$$
(\text { Safe }):=\forall t_{1}, t_{2} \quad \operatorname{segm}\left(t_{1}\right)=\operatorname{segm}(t 2) \rightarrow t_{1}=t_{2}
$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant $(\operatorname{lnv}(i))$ for every control location i of the TCS, and prove:

$$
(\operatorname{lnv}(i)) \models(\text { Safe }) \text { for all locations } i
$$

and that the invariants are preserved under all transitions of the system,

$$
(\operatorname{lnv}(i)) \wedge(\text { Update }) \models\left(\operatorname{Inv}^{\prime}(j)\right)
$$

whenever (Update) is a transition from location i to j .

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]
use the capabilities of H-PILoT of generating counterexamples
- generate automatically [work in progress]

Ground satisfiability problems for pointer data structures
the decision procedures presented before can be used without problems

Other interesting topics

- Generate invariants
- Verification by abstraction/refinement

Abstraction-based Verification

Iocation unreachable location unreachable check feasibility \longrightarrow location reachable \Downarrow
conjunction of constraints: $\phi(1) \wedge \operatorname{Tr}(1,2) \wedge \cdots \wedge \operatorname{Tr}(n-1, n) \wedge \neg \operatorname{safe}(n)$

- satisfiable: feasible path
- unsatisfiable: refine abstract program s.t. the path is not feasible [McMillan 2003-2006] use 'local causes of inconsistency' \mapsto compute interpolants

Summary

- Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:
Z3: http://z3.codeplex.com/
CVC4: http://cvc4.cs.nyu.edu/web/
Yices: http://yices.csl.sri.com/

- Ideas about how to use them for verification

Decision procedures for other classes of theories/Applications"
Next semester: Seminar "Decision Procedures and Applications"
More details on Specification, Model Checking, Verification:
Every summer (usually end of August):
Summer school "Verification Technology, Systems \& Applications"
$\mathrm{BSc} / \mathrm{MSc}$ Theses in the area

