
Decision Procedures for Verification

Combinations of Decision Procedures (3)

4.02.2019

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Last time

Combinations of Decision Procedures

The Nelson/Oppen Procedure

(for theories with disjoint signature)

From conjunctions to arbitrary combinations

DPLL(T)

2

Satisfiability of formulae with quantifiers

3

Satisfiability of formulae with quantifiers

In many applications we are interested in testing the satisfiability of formulae

containing (universally quantified) variables.

Examples

• check satisfiability of formulae in the Bernays-Schönfinkel class

• check whether a set of (universally quantified) Horn clauses

entails a ground clause

• check whether a property is consequence of a set of axioms

Example 1: f : Z → Z is monotonely increasing

and g : Z → Z is defined by g(x) = f (x + x)

then g is also monotonely increasing

Example 2: If array a is increasingly sorted, and

x is inserted before the first position i with a[i] > x

then the array remains increasingly sorted.

4

A theory of arrays

We consider the theory of arrays in a many-sorted setting.

Syntax:

• Sorts: Elem (elements), Array (arrays) and Index (indices, here integers).

• Function symbols: read, write.

a(read) = Array × Index → Element

a(write) = Array × Index × Element → Array

5

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

6

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

7

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form

t ≤ u or t = u where t and u are either a variable or a ground term of

sort Index

Example: (x ≤ 3 ∨ x ≈ y) ∧ y ≤ z is an index guard

Example: x + 1 ≤ c, x + 3 ≤ y , x + x ≤ 2 are not index guards.

• Array property formula [Bradley,Manna,Sipma’06]

(∀i)(ϕI (i) → ϕV (i)), where:

ϕI : index guard

ϕV : formula in which any universally quantified i occurs in a direct

array read; no nestings

Example: c ≤ x ≤ y ≤ d → a(x) ≤ a(y) is an array property formula

Example: x < y → a(x) < a(y) is not an array property formula

8

Decision Procedure

(Rules should be read from top to bottom)

Step 1: Put F in NNF.

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a′ (write)

Given a formula F containing an occurrence of a write term write(a, i , v),

we can substitute every occurrence of write(a, i , v) with a fresh variable a′

and explain the relationship between a′ and a.

9

Decision Procedure

Step 3 Apply the following rule exhaustively to remove existential

quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

Existential quantification can arise during Step 1 if the given formula

contains a negated array property.

10

Decision Procedure

Steps 4-6 accomplish the reduction of universal quantification to finite

conjunction.

The main idea is to select a set of symbolic index terms on which to

instantiate all universal quantifiers.

11

Theories of arrays

Step 4 From the output F3 of Step 3, construct the index set I:

I = {λ}∪

{t | ·[t] ∈ F3 such that t is not a universally quantified variable}∪

{t | t occurs as an evar in the parsing of index guards}

(evar is any constant, ground term, or unquantified variable.)

This index set is the finite set of indices that need to be examined. It

includes all terms t that occur in some read(a, t) anywhere in F (unless it

is a universally quantified variable) and all terms t that are compared to a

universally quantified variable in some index guard.

λ is a fresh constant that represents all other index positions that are not

explicitly in I.

12

Theories of arrays

Step 5 Apply the following rule exhaustively to remove universal

quantification:

H[∀i .F [i] → G [i]]

H
[∧

i∈In (F [i] → G [i])
] (forall)

where n is the size of the list of quantified variables i .

This is the key step.

It replaces universal quantification with finite conjunction over the index

set. The notation i ∈ In means that the variables i range over all n-tuples

of terms in I.

13

Theories of arrays

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

The new conjuncts assert that the variable λ introduced in Step 4 is unique:

it does not equal any other index mentioned in F5.

Step 7: Decide the TA-satisfiability of F6 using the decision procedure for

the quantifier free fragment.

14

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

It contains one array property,

∀i .i 6= l → a[i] = b[i]

index guard: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

Step 1: The formula is already in NNF.

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

15

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 2: We rewrite F as:

F2 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

index guards: i 6= l := (i ≤ l − 1 ∨ i ≥ l + 1) value constraint: a[i] = b[i]

j 6= l := (j ≤ l − 1 ∨ j ≥ l + 1) value constraint: a[i] = a′ [j]

Step 3: F2 does not contain any existential quantifiers 7→ F3 = F2.

Step 4: The index set is

I = {λ} ∪ {k} ∪ {l , l − 1, l + 1} = {λ, k, l , l − 1, l + 1}

16

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 3:

F3 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

∧a′[l] = v ∧ (∀j .j 6= l → a[j] = a′[j]).

Step 4: I = {λ, k, l , l − 1, l + 1}

Step 5: we replace universal quantification as follows:

F5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧
∧

i∈I

(i 6= l → a[i] = b[i])

∧a′[l] = v ∧
∧

i∈I

(j 6= l → a[j] = a′[j]).

17

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ, k, l , l − 1, l + 1}

Step 5 (continued) Expanding produces:

F5′ : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧

(λ 6= l → a[λ] = b[λ]) ∧ (k 6= l → a[k] = b[k]) ∧ (l 6= l → a[l] = b[l]) ∧

(l − 1 6= l → a[l − 1] = b[l − 1]) ∧ (l + 1 6= l → a[l + 1] = b[l + 1]) ∧

a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ]) ∧ (k 6= l → a[k] = a′[k]) ∧

(l 6= l → a[l] = a′[l]) ∧ (l − 1 6= l → a[l − 1] = a′[l − 1]) ∧

(l + 1 6= l → a[l + 1] = a′[l + 1]).

18

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

I = {λ} ∪ {k} ∪ {l , l − 1, l + 1} = {λ, k, l , l − 1, l + 1}

Step 5 (continued): Simplifying produces

F ′′5 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1].

19

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 distinguishes λ from other members of I:

F6 : a′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (λ 6= l → a[λ] = b[λ])

∧(k 6= l → a[k] = b[k]) ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a′[l] = v ∧ (λ 6= l → a[λ] = a′[λ])

∧(k 6= l → a[k] = a′[k]) ∧ a[l − 1] = a′[l − 1] ∧ a[l + 1] = a′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

20

Example

Consider the array property formula

F : write(a, l , v)[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ (∀i .i 6= l → a[i] = b[i])

Step 6 Simplifying, we have

F
′6 : a

′[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ a[λ] = b[λ]

∧a[k] = b[k] ∧ a[l − 1] = b[l − 1] ∧ a[l + 1] = b[l + 1]

∧a
′

[l] = v ∧ a[λ] = a
′

[λ]

∧(k 6= l → a[k] = a
′[k]) ∧ a[l − 1] = a

′[l − 1] ∧ a[l + 1] = a
′[l + 1]

∧λ 6= k ∧ λ 6= l ∧ λ 6= l − 1 ∧ λ 6= l + 1.

We can use for instance DPLL(T).

Alternative: Case distinction. There are two cases to consider.

(1) If k=l , then a′[l]=v and a′[k]=b[k] imply b[k]=v , yet b[k]6=v .

(2) If k 6=l , then a[k]=v and a[k]=b[k] imply b[k]=v , but again b[k]6=v .

Hence, F’6 is TA-unsatisfiable, indicating that F is TA-unsatisfiable.

21

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof

(Soundness) Step 1-6 preserve satisfiability

(Fi is a logical consequence of Fi−1).

22

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 6: From the output F5 of Step 5, construct

F6 : F5 ∧
∧

i∈I\{λ}

λ 6= i

Assume that F6 is satisfiabile. Clearly F5 has a model.

23

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 5 Apply the following rule exhaustively to remove universal quantification:

H[∀i .F [i] → G [i]]

H
[

∧

i∈In (F [i] → G [i])
] (forall)

Assume that F5 is satisfiabile. Let A = (Z, Elem, {aA}a∈Arrays , ...) be a

model for F5. Construct a model B for F4 as follows.

For x ∈ Z: l(x) (u(x)) closest left (right) neighbor of x in I.

aB(x) =

{

aA(l(x)) if x − l(x) ≤ u(x) − x or u(x) = ∞

aA(u(x)) if x − l(x) > u(x) − x or l(x) = −∞

24

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 3 Apply the following rule exhaustively to remove existential quantification:

F [∃i .G [i]]

F [G [j]]
for fresh j (exists)

If F3 has model then F2 has model

25

Soundness and Completeness

Theorem (Soundness and Completeness)

Consider a formula F from the array property fragment . The output F6 of

Step 6 is Tarrays -equisatisfiable to F.

Proof (Completeness)

Step 2: Apply the following rule exhaustively to remove writes:

F [write(a, i , v)]

F [a′] ∧ a′[i] = v ∧ (∀j .j 6= i → a[j] = a′[j])
for fresh a

′

(write)

Given a formula F containing an occurrence of a write term write(a, i , v), we can

substitute every occurrence of write(a, i , v) with a fresh variable a′ and explan the

relationship between a′ and a.

If F2 has a model then F1 has a model.

Step 1: Put F in NNF: NNF F1 is equivalent to F.

26

Theories of arrays

Theorem (Complexity) Suppose (Tindex ∪ Telem)-satisfiability is in NP.

For sub-fragments of the array property fragment in which formulae have

bounded-size blocks of quantifiers, Tarrays -satisfiability is NP-complete.

Proof NP-hardness is clear.

That the problem is in NP follows easily from the procedure: instantiating

a block of n universal quantifiers quantifying subformula G over index set I

produces |I | · n new subformulae, each of length polynomial in the length

of G . Hence, the output of Step 6 is of length only a polynomial factor

greater than the input to the procedure for fixed n.

27

Program verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

28

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

29

Program Verification

Example: Does BubbleSort return

a sorted array?

int [] BubbleSort(int[] a) {

int i , j , t;

for (i := |a| − 1; i > 0; i := i − 1) {

for (j := 0; j < i ; j := j + 1) {

if (a[j] > a[j + 1]){t := a[j];

a[j] := a[j + 1];

a[j + 1] := t};

}} return a}

−1 ≤ i < |a|∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

−1 ≤ i < |a| ∧ 0 ≤ j ≤ i∧

partitioned(a, 0, i , i + 1, |a| − 1)∧

sorted(a, i , |a| − 1)

partitioned(a, 0, j − 1, j, j) C2

Generate verification conditions and prove that they are valid

Predicates:

• sorted(a, l , u): ∀i , j(l≤i≤j≤u→a[i]≤a[j])

• partitioned(a, l1, u1, l2, u2): ∀i , j(l1≤i≤u1≤l2≤j≤u2→a[i]≤a[j])

To prove: C2(a) ∧ Update(a, a′) → C2(a
′)

30

Another Situation

Insertion of an element c in a sorted array a of length n

for (i := 1; i ≤ n; i := i + 1) {
if a[i] ≥ c{n := n + 1

for (j := n; j > i ; j := j − 1){a[i] := a[i − 1]}
a[i] := c; return a

}} a[n + 1] := c; return a

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

31

Another Situation

Task:

If the array was sorted before insertion it is sorted also after insertion.

Sorted(a, n) ∧ Update(a, n, a′, n′) ∧ ¬Sorted(a′, n′) |=T ⊥?

Sorted(a, n) ∀i , j(1 ≤ i ≤ j ≤ n → a[i] ≤ a[j])

Update(a, n, a′, n′) ∀i((1 ≤ i ≤ n ∧ a[i] < c) → a′[i] = a[i])

∀i((c ≤ a(1) → a′[1] := c)

∀i((a[n] < c → a′[n + 1] := c)

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] < c ∧ a[i] ≥ c) → (a′[i] = c)

∀i((1 ≤ i − 1 ≤ i ≤ n ∧ a[i − 1] ≥ c ∧ a[i] ≥ c → a′[i] := a[i − 1])

n′ := n + 1

¬Sorted(a′, n′) ∃k, l(1 ≤ k ≤ l ≤ n′ ∧ a′k] > a′[l])

32

Beyond the array property fragment

Extension: New arrays defined by case distinction – Def(f ′)

∀x(φi (x) → f ′(x)=si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (1)

∀x(φi (x) → ti (x)≤f ′(x)≤si (x)) i ∈ I , where φi (x) ∧ φj (x) |=T0
⊥ for i 6=j (2)

where si , ti are terms over the signature Σ such that T0 |= ∀x(φi (x)→ti (x)≤si (x))

for all i ∈ I .

T0 ⊆ T0 ∧Def(f ′) has the property that for every set G of ground

clauses in which there are no nested applications of f ′:

T0 ∧ Def(f ′) ∧ G |=⊥ iff T0 ∧ Def(f ′)[G] ∧ G

(sufficient to use instances of axioms in Def(f ′) which are relevant for G)

• Some of the syntactic restrictions of the array property fragment can be

lifted

33

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Example: doubly-linked lists; ordered elements

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∀p (p 6= null ∧ p.next 6= null → p.info ≤ p.next.info)

34

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms: ∀p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Theorem. K set of clauses in the fragment above. Then for every set G of

ground clauses, (K ∪ G) ∪ Ts |=⊥ iff K [G] ∪ Ts |=⊥

where K [G] is the set of instances of K in which the variables are replaced

by subterms in G .

35

Example: A theory of doubly-linked lists

∀p (p 6= null ∧ p.next 6= null → p.next.prev = p)

∀p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

36

Example: A theory of doubly-linked lists

(c 6=null ∧ c.next 6=null→c.next.prev=c) (c.next 6=null ∧ c.next.next6=null→c.next.next.prev=c.next

(d 6=null ∧ d .next6=null→d .next.prev=d) (d .next6=null ∧ d .next.next6=null→d.next.next.prev=d .next

∧ c 6=null ∧ c.next 6=null ∧ d 6=null ∧ d .next6=null ∧ c.next=d .next ∧ c 6= d |= ⊥

37

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

38

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

39

Example: List insertion

Initially list is sorted: p.next 6= null → p.prio ≥ p.next.prio

c.prio = x , c.next = null

for all p 6= c do

if p.prio ≤ x then if First(p) then c.next′ = p, First′(c), ¬First′(p) endif; p.next′ = p.next

p.prio > x then case p.next = null then p.next′ := c, c.next′ = null

p.next 6= null ∧ p.next.prio > x then p.next′ = p.next

p.next 6= null ∧ p.next.prio ≤ x then p.next′ = c, c.next′ = p.next

Verification task: After insertion list remains sorted

40

Example: List insertion

Initially list is sorted: ∀p(p.next 6= null → p.prio ≥ p.next.prio)

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p) → next′(c)=p ∧ First′(c))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ First(p) → next′(p)=next(p) ∧ ¬First′(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)≤x ∧ ¬First(p) → next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null → next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p)=null → next′(c)=null)

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))>x → next′(p)=next(p))

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(p)=c

∀p(p 6=null ∧ p 6=c ∧ prio(p)>x ∧ next(p) 6=null ∧ prio(next(p))≤x → next′(c)=next(p))

To check: Sorted(next, prio)∧Update(next, next′)∧ p0.next
′ 6=null∧p0.prio6≥p0.next

′.prio |=⊥

We only need to use instances in which variables are

replaced by ground subterms occurring in the problem

41

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Sorted(next)

T0 T0 = (Lists, next)

42

Example: List insertion

To show:

T2 T2 = T1∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

Instantiate: T1∪ Update(next, next′)[G] ∪G |=

Hierarchical reasoning:
︸ ︷︷ ︸

G ′

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

T0 T0 = (Lists, next)

43

Example: List insertion

To show:

T2 T2 = T1 ∪ Update(next, next′) T2 ∪ ¬Sorted(next′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Sorted(next) T1 ∪ G ′(next) |=⊥

⇓

T0 T0 = (Lists, next) T0 ∪ G ′′ |=⊥

44

More general concept

Local Theory Extensions

45

Satisfiability of formulae with quantifiers

Goal: generalize the ideas for extensions of theories

46

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Mon(f) ∀i , j(i < j → f (i) < f (j))

Problems:

• A prover for R ∪ Z does not know about f

• A prover for first-order logic may have problems with the reals and integers

• DPLL(T) cannot be used (Mon, Z,R: non-disjoint signatures)

• SMT provers may have problems with the universal quantifiers

Our goal: reduce search: consider certain instances Mon(f)[G]
without loss of completeness

hierarchical/modular reasoning:
reduce to checking satisfiability of a set of constraints over R ∪ Z

47

Local theory extensions

Solution: Local theory extensions

K set of equational clauses; T0 theory; T1 = T0 ∪ K

(Loc) T0 ⊆ T1 is local, if for ground clauses G ,

T0 ∪K ∪ G |=⊥ iff T0 ∪K[G] ∪ G has no (partial) model

Various notions of locality, depending of the instances to be considered:

stable locality, order locality; extended locality.

48

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

∀i , j(i < j → f (i) < f (j))

49

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

Solution 1:

SMT (R ∪ Z ∪ UIF)

50

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Add congruence axioms. Replace pos-terms with new constants

Base theory (R ∪ Z) Extension

a < b f (a) = f (b) + 1

a < b → f (a) < f (b)

b < a → f (b) < f (a)

a = b → f (a) = f (b)

Solution 2:

Hierarchical reasoning

51

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = b1 + 1

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

52

Example: Strict monotonicity

R ∪ Z ∪Mon(f) ∪ (a < b ∧ f (a) = f (b) + 1)
︸ ︷︷ ︸

G

|=⊥

Extension is local 7→ replace axiom with ground instances

Replace f -terms with new constants

Add definitions for the new constants

Base theory (R ∪ Z) Extension

a < b a1 = f (a)

a1 = b1 + 1 b1 = f (b)

a < b → a1 < b1

b < a → b1 < a1

a = b → a1 = b1

53

Reasoning in local theory extensions

Locality: T0 ∪ K ∪ G |=⊥ iff T0 ∪ K[G] ∪ G |=⊥

Problem: Decide whether T0 ∪ K[G] ∪ G |=⊥

Solution 1: Use SMT (T0+UIF): possible only if K[G] ground

Solution 2: Hierarchic reasoning [VS’05]

reduce to satisfiability in T0: applicable in general

7→ parameterized complexity

54

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Number of trains: n ≥ 0 Z

Minimum and maximum speed of trains: 0 ≤ min < max R

Minimum secure distance: lalarm > 0 R

Time between updates: ∆t > 0 R

Train positions before and after update: pos(i), pos′(i) : Z → R

55

Example

Simplified version of ETCS Case Study [Jacobs,VS’06, Faber,Jacobs,VS’07]

Update(pos, pos′) : • ∀i (i = 0 → pos(i) + ∆t∗min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

• ∀i (0 < i < n ∧ pos(i − 1) > 0 ∧ pos(i − 1) − pos(i) ≥ lalarm

→ pos(i) + ∆t ∗ min ≤ pos′(i) ≤ pos(i) + ∆t∗max)

...

56

Example

Safety property: No collisions Safe(pos) : ∀i , j(i<j→pos(i)>pos(j))

Inductive invariant: Safe(pos)∧Update(pos, pos′)∧¬Safe(pos′) |=TS
⊥

where TS is the extension of the (disjoint) combination R ∪ Z

with two functions, pos, pos′ : Z → R

Our idea: Use chains of “instantiation” + reduction.

57

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

T1 T1 = T0 ∪ Safe(pos)

T0 T0 = R ∪ Z

58

Example

To show:

T2 T2 = T1 ∪ Update(pos, pos′) T2 ∪ ¬Safe(pos′)
︸ ︷︷ ︸

G

|=⊥

⇓

T1 T1 = T0 ∪ Safe(pos) T1 ∪ G ′(pos) |=⊥

⇓

T0 T0 = R ∪ Z T0 ∪ G ′′ |=⊥

Φ(c, cpos′ , dpos, n, lalarm, min,max,∆t) |=⊥

Method 1: SAT checking/ Counterexample generation

Method 2: Quantifier elimination

relationships between parameters which guarantee safety

59

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

• Take into account also:

− Emergency messages

− Durations

• Specification language: CSP-OZ-DC

− Reduction to satisfiability in theories for which

decision procedures exist

• Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC 7→ Transition constr. 7→ Decision procedures (H-PILoT)

60

Example 2: Parametric topology

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

61

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Approach:

• Decompose the system in trajectories (linear rail tracks; may overlap)

• Task 1: - Prove safety for trajectories with incoming/outgoing trains

- Conclude that for control rules in which trains have sufficient

freedom (and if trains are assigned unique priorities) safety

of all trajectories implies safety of the whole system

• Task 2: - General constraints on parameters which guarantee safety

62

Parametricity and modularity

• Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

• No cycles

• in-degree (out-degree) of associated graph at most 2.

Data structures:

p1: trains

• 2-sorted pointers

p2: segments

• scalar fields (f :pi→R, g :pi→Z)

• updates efficient decision procedures (H-PiLoT)

63

Incoming and outgoing trains

Example 1: Speed Update

pos(t) < length(segm(t)) − d → 0 ≤ spd′(t) ≤ lmax(segm(t))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) = tid(t)

→ 0 ≤ spd′(t) ≤ min(lmax(segm(t)), lmax(nexts (segm(t))))

pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts (segm(t))) 6= tid(t)

→ spd′(t) = max(spd(t) − decmax, 0)

64

Incoming and outgoing trains

65

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm’, spd’, pos’, train’)

Assume: s1 6= nulls , t1 6= nullt , train(s) 6= t1, alloc(s1) = idt(t1)

t 6=t1, ids(segm(t))<ids(s1), nextt (t)=nullt , alloc(s1)=tid(t1) → next′(t)=t1 ∧ next′(t1)=nullt

t 6=t1, ids(segm(t))<ids(s1), alloc(s1)=tid(t1), nextt (t) 6=nullt , ids(segm(nextt(t)))≤ids(s1)

→ next′(t)=nextt(t)

...
t 6=t1, ids(segm(t))≥ids(s1) → next′(t)=nextt (t)

66

Incoming and outgoing trains

67

Safety property

Safety property we want to prove: no two trains ever occupy the same track

segment:

(Safe) := ∀t1, t2 segm(t1) = segm(t2) → t1 = t2

In order to prove that (Safe) is an invariant of the system, we need to find a

suitable invariant (Inv(i)) for every control location i of the TCS, and prove:

(Inv(i)) |= (Safe) for all locations i

and that the invariants are preserved under all transitions of the system,

(Inv(i)) ∧ (Update) |= (Inv′(j))

whenever (Update) is a transition from location i to j .

68

Safety property

Need additional invariants.

- generate by hand [Faber, Ihlemann, Jacobs, VS, ongoing]

use the capabilities of H-PILoT of generating counterexamples

- generate automatically [work in progress]

Ground satisfiability problems for pointer data structures

the decision procedures presented before can be used without problems

69

Other interesting topics

• Generate invariants

• Verification by abstraction/refinement

70

Abstraction-based Verification

Abstract program

feasible path

location reachable

Concrete program

feasible path

location unreachable location unreachable

check feasibility

⇓

conjunction of constraints: φ(1) ∧ Tr(1, 2) ∧ · · · ∧ Tr(n − 1, n) ∧ ¬safe(n)

- satisfiable: feasible path

- unsatisfiable: refine abstract program s.t. the path is not feasible

[McMillan 2003-2006] use ‘local causes of inconsistency’

7→ compute interpolants

71

Summary

• Decision procedures for various theories/theory combinations

Implemented in most of the existing SMT provers:

Z3: http://z3.codeplex.com/

CVC4: http://cvc4.cs.nyu.edu/web/

Yices: http://yices.csl.sri.com/

• Ideas about how to use them for verification

Decision procedures for other classes of theories/Applications”

Next semester: Seminar “Decision Procedures and Applications”

More details on Specification, Model Checking, Verification:

Every summer (usually end of August):

Summer school “Verification Technology, Systems & Applications”

BSc/MSc Theses in the area

72

