Decision Procedures in Verification

Decision Procedures (1)

17.12.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Theories (Syntactic vs. Semantics view)

Herbrand models \mapsto The Bernays-Schönfinkel class

Algorithmic Problems

Decidability/Undecidability

Methods: Ordered Resolution with Selection

→ Craig Interpolation

 \mapsto redundancy

Decidable classes:

Bernays-SchPönfinkel class, Ackermenn class, Monadic class

3.2 Deduction problems

Satisfiability w.r.t. a theory

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\lbrace e/0, */2, i/1 \rbrace, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \quad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \quad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Satisfiability w.r.t. a theory

Example

Let
$$\Sigma = (\{e/0, */2, i/1\}, \emptyset)$$

Let \mathcal{F} consist of all (universally quantified) group axioms:

$$\forall x, y, z \quad x * (y * z) \approx (x * y) * z$$
 $\forall x \quad x * i(x) \approx e \quad \wedge \quad i(x) * x \approx e$
 $\forall x \quad x * e \approx x \quad \wedge \quad e * x \approx x$

Question: Is $\forall x, y(x * y = y * x)$ entailed by \mathcal{F} ?

Alternative question:

Is $\forall x, y(x * y = y * x)$ true in the class of all groups?

Logical theories

Syntactic view

first-order theory: given by a set \mathcal{F} of (closed) first-order Σ -formulae.

the models of \mathcal{F} : $\mathsf{Mod}(\mathcal{F}) = \{ \mathcal{A} \in \Sigma \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F} \}$

Semantic view

given a class $\mathcal M$ of Σ -algebras

the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Decidable theories

Let $\Sigma = (\Omega, \Pi)$ be a signature.

 \mathcal{M} : class of Σ -algebras. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

 \mathcal{F} : class of (closed) first-order formulae.

The theory $\mathcal{T} = \mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Undecidable theories

- ulletTh((\mathbb{Z} , {0, 1, +, *}, { \leq }))
- Peano arithmetic
- ulletTh(Σ -alg)

Peano arithmetic

Peano axioms:
$$\forall x \neg (x+1 \approx 0)$$
 (zero) $\forall x \forall y \ (x+1 \approx y+1 \rightarrow x \approx y)$ (successor) $F[0] \land (\forall x \ (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$ (induction) $\forall x \ (x+0 \approx x)$ (plus zero) $\forall x, y \ (x+(y+1) \approx (x+y)+1)$ (plus successor) $\forall x, y \ (x*0 \approx 0)$ (times 0) $\forall x, y \ (x*(y+1) \approx x*y+x)$ (times successor) $3*y+5>2*y$ expressed as $\exists z \ (z \neq 0 \land 3*y+5 \approx 2*y+z)$

Intended interpretation: (
$$\mathbb{N}$$
, $\{0, 1, +, *\}$, $\{\approx, \leq\}$) (does not capture true arithmetic by Goedel's incompleteness theorem)

Undecidable theories

- $\bullet Th((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: Suppose there is an algorithm P that, given a formula in one of the theories above decides whether that formula is valid.

We use P to give a decision algorithm for the language

 $\{(G(M), w)|G(M) \text{ is the G\"{o}delisation of a TM } M \text{ that accepts the string w } \}$

As the latter problem is undecidable, this will show that P cannot exist.

Undecidable theories

- $\bullet Th((\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}))$
- Peano arithmetic
- \bullet Th(Σ -alg)

Idea of undecidability proof: (ctd)

(1) For Th((\mathbb{Z} , {0, 1, +, *}, { \leq })) and Peano arithmetic:

multiplication can be used for modeling Gödelisation

(2) For Th(Σ -alg):

Given M and w, we create a FOL signature and a set of formulae over this signature encoding the way M functions, and a formula which is valid iff M accepts w.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29] Signature: $(\{0, 1, +\}, \{\approx, \leq\})$ (no *)

 Axioms $\{$ (zero), (successor), (induction), (plus zero), (plus successor) $\}$
- Th(\mathbb{Z}_+) $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers.

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Problems

 \mathcal{T} : first-order theory in signature Σ ; \mathcal{L} class of (closed) Σ -formulae

Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on \mathcal{L}

	$Pred = \emptyset \qquad \qquad \{\phi \in \mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L}=\{\forall x A(x) \mid A \text{ atomic}\}$	word problem	
$\mathcal{L}=\{\forall x(A_1\wedge\ldots\wedge A_n\rightarrow B)\mid A_i, B \text{ atomic}\}$	uniform word problem	Th_{\forallHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity problem	$Th_{\forall,cl}$
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity problem	Th_\forall
$\mathcal{L}=\{\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification problem	Th∃
$\mathcal{L}=\{\forall x\exists xA_1\wedge\ldots\wedge A_n\mid A_i \text{ atomic}\}$	unification with constants	$Th_{orall \exists}$

 \mathcal{T} -validity: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Remark: $\mathcal{T} \models \phi$ iff $\mathcal{T} \cup \neg \phi$ unsatisfiable

Every \mathcal{T} -validity problem has a dual \mathcal{T} -satisfiability problem:

 \mathcal{T} -satisfiability: Let \mathcal{T} be a first-order theory in signature Σ Let \mathcal{L} be a class of (closed) Σ -formulae $\neg \mathcal{L} = \{ \neg \phi \mid \phi \in \mathcal{L} \}$

Given ψ in $\neg \mathcal{L}$, is it the case that $\mathcal{T} \cup \psi$ is satisfiable?

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \bigwedge L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

Common restrictions on \mathcal{L} / $\neg \mathcal{L}$

\mathcal{L}	$ eg \mathcal{L}$
$\{\forall x A(x) \mid A \text{ atomic}\}$	$\{\exists x \neg A(x) \mid A \text{ atomic}\}$
$\{\forall x(A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic}\}$	$\{\exists x(A_1 \land \ldots \land A_n \land \neg B) \mid A_i, B \text{ atomic}\}$
$\{\forall x \bigvee L_i \mid L_i \text{ literals}\}$	$\{\exists x \land L'_i \mid L'_i \text{ literals}\}$
$\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	$\{\exists x \phi'(x) \mid \phi'(x) \text{ unquantified}\}$

validity problem for universal formulae

ground satisfiability problem

In what follows we will focus on the problem of checking the satisfiability of conjunctions of ground literals

$$\mathcal{T} \models \forall x A(x) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x \neg A(x) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (A_1 \wedge \cdots \wedge A_n \rightarrow B) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (A_1 \wedge \cdots \wedge A_n \wedge \neg B) \text{ unsatisfiable}$$

$$\mathcal{T} \models \forall x (\bigvee_{i=1}^n A_i \vee \bigvee_{j=1}^m \neg B_j) \qquad \text{iff} \qquad \mathcal{T} \cup \exists x (\neg A_1 \wedge \cdots \wedge \neg A_n \wedge B_1 \wedge \cdots \wedge B_m)$$

$$\text{unsatisfiable}$$

\mathcal{T} -satisfiability vs. Constraint Solving

The field of Constraint Solving also deals with satisfiability problems But be careful:

- ullet in Constraint Solving one is interested if a formula is satisfiable in a given, fixed model of \mathcal{T} .
- ullet in \mathcal{T} -satisfiability one is interested if a formula is satisfiable in any model of \mathcal{T} at all.

3.3. Theory of Uninterpreted Function Symbols

Why?

- Reasoning about equalities is important in automated reasoning
- Applications to program verification
 (approximation: abstract from additional properties)

Application: Compiler Validation

Example: prove equivalence of source and target program

```
1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1
```

To prove: (indexes refer to values at line numbers)

$$y_{1} \approx 1 \wedge [(z_{0} \approx x_{0} * x_{0} * x_{0} \wedge y_{3} \approx x_{0} * x_{0} + y_{1}) \vee (z_{0} \not\approx x_{0} * x_{0} \wedge x_{0} \wedge y_{3} \approx y_{1})] \wedge$$

$$y'_{1} \approx 1 \wedge R1_{2} \approx x'_{0} * x'_{0} \wedge R2_{3} \approx R1_{2} * x'_{0} \wedge$$

$$\wedge [(z'_{0} \approx R2_{3} \wedge y'_{5} \approx R1_{2} + 1) \vee (z'_{0} \neq R2_{3} \wedge y'_{5} \approx y'_{1})] \wedge$$

$$x_{0} \approx x'_{0} \wedge y_{0} \approx y'_{0} \wedge z_{0} \approx z'_{0} \implies x_{0} \approx x'_{0} \wedge y_{3} \approx y'_{5} \wedge z_{0} \approx z'_{0}$$

Possibilities for checking it

(1) **Abstraction**.

Consider * to be a "free" function symbol (forget its properties). Test it property can be proved in this approximation. If so, then we know that implication holds also under the normal interpretation of *.

(2) Reasoning about formulae in fragments of arithmetic.

Uninterpreted function symbols

Let $\Sigma = (\Omega, \Pi)$ be arbitrary

Let $\mathcal{M} = \Sigma$ -alg be the class of all Σ -structures

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

in general undecidable

Decidable fragment:

e.g. the class $\mathsf{Th}_\forall(\Sigma\text{-alg})$ of all universal formulae which are true in all $\Sigma\text{-algebras}$.

Uninterpreted function symbols

Assume $\Pi = \emptyset$ (and \approx is the only predicate)

In this case we denote the theory of uninterpreted function symbols by $UIF(\Sigma)$ (or UIF when the signature is clear from the context).

This theory is sometimes called the theory of free functions and denoted $\mathsf{Free}(\Sigma)$

Uninterpreted function symbols

Theorem 3.3.1

The following are equivalent:

- (1) testing validity of universal formulae w.r.t. UIF is decidable
- (2) testing validity of (universally quantified) clauses w.r.t. UIF is decidable

Proof: Follows from the fact that any universal formula is equivalent to a conjunction of (universally quantified) clauses.

Task:

Check if
$$UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \wedge \cdots \wedge s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s_j'(\overline{x}) \approx t_j't(\overline{x}))$$

Solution 1:

The following are equivalent:

- (1) $(\bigwedge_i s_i \approx t_i) \rightarrow \bigvee_i s_i' \approx t_i'$ is valid
- (2) $Eq(\sim) \wedge Con(f) \wedge (\bigwedge_i s_i \sim t_i) \wedge (\bigwedge_j s_j' \not\sim t_j')$ is unsatisfiable.

where
$$Eq(\sim)$$
: Refl $(\sim) \land Sim(\sim) \land Trans(\sim)$
Con (f) : $\forall x_1, \ldots, x_n, y_1, \ldots, y_n(\bigwedge x_i \sim y_i \rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n))$

Resolution: inferences between transitivity axioms - nontermination

Task:

Check if
$$UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \wedge \cdots \wedge s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s_j'(\overline{x}) \approx t_j'(\overline{x}))$$

Solution 2: Ackermann's reduction.

Flatten the formula (replace, bottom-up, f(c) with a new constant c_f $\phi \mapsto FLAT(\phi)$

Theorem 3.3.2: The following are equivalent:

- (1) $(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \land \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})$ is satisfiable
- (2) $FC \wedge FLAT[(\bigwedge_i s_i(\overline{c}) \approx t_i(\overline{c})) \wedge \bigwedge_j s'_j(\overline{c}) \not\approx t'_j(\overline{c})]$ is satisfiable

where
$$FC = \{c_1 \approx d_1, \dots c_n \approx d_n \to c_f \approx d_f \mid \text{ whenever } f(c_1, \dots, c_n) \text{ was renamed to } c_f \ f(d_1, \dots, d_n) \text{ was renamed to } d_f \}$$

Note: The problem is decidable in PTIME (see next pages)

Problem: Naive handling of transitivity/congruence axiom $\mapsto O(n^3)$

Goal: Give a faster algorithm

The following are equivalent:

- (1) $C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$ is satisfiable
- (2) $FC \wedge FLAT[C]$ is satisfiable, where:

 $FLAT[f(a,b) \approx a \land f(f(a,b),b) \not\approx a]$ is computed by introducing new constants renaming terms starting with f and then replacing in C the terms with the constants:

• FLAT
$$[f(a,b) \approx a \land f(f(a,b),b) \not\approx a] := a_1 \approx a \land a_2 \not\approx a$$

$$f(a,b) = a_1$$

$$f(a_1,b) = a_2$$
• FC := $(a \approx a_1 \rightarrow a_1 \approx a_2)$

Thus, the following are equivalent:

(1)
$$C := f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$$
 is satisfiable

(2)
$$\underbrace{(a \approx a_1 \rightarrow a_1 \approx a_2)}_{FC} \land \underbrace{a_1 \approx a \land a_2 \not\approx a}_{FLAT[C]}$$
 is satisfiable

Task:

Check if
$$UIF \models \forall \overline{x}(s_1(\overline{x}) \approx t_1(\overline{x}) \wedge \cdots \wedge s_k(\overline{x}) \approx t_k(\overline{x}) \rightarrow \bigvee_{j=1}^m s_j'(\overline{x}) \approx t_j'(\overline{x}))$$

i.e. if $(s_1(\overline{c}) \approx t_1(\overline{c}) \wedge \cdots \wedge s_k(\overline{c}) \approx t_k(\overline{c}) \wedge \bigwedge_j s_j'(\overline{c}) \not\approx t_j'(\overline{c}))$ unsatisfiable.

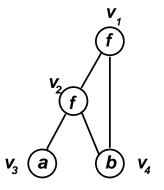
Task:

Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \wedge \cdots \wedge s_k(\overline{c}) \approx t_k(\overline{c}) \wedge \bigwedge_k s_k'(\overline{c}) \not\approx t_k'(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

represent the terms occurring in the problem as DAG's

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.



 $v_1: f(f(a, b), b)$

 $v_2: f(a,b)$

 v_3 : a

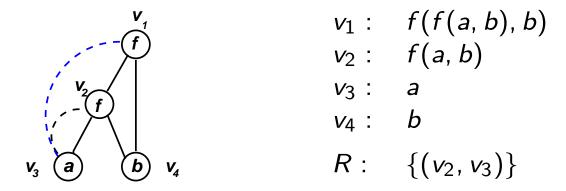
 $v_4: b$

Task: Check if $(s_1(\overline{c}) \approx t_1(\overline{c}) \wedge \cdots \wedge s_k(\overline{c}) \approx t_k(\overline{c}) \wedge s(\overline{c}) \not\approx t(\overline{c}))$ unsatisfiable.

Solution 3 [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

- represent the terms occurring in the problem as DAG's
- represent premise equalities by a relation on the vertices of the DAG

Example: Check whether $f(f(a, b), b) \approx a$ is a consequence of $f(a, b) \approx a$.



- compute the "congruence closure" R^c of R
- check whether $(v_1, v_3) \in R^c$

Computing the congruence closure of a DAG

Example

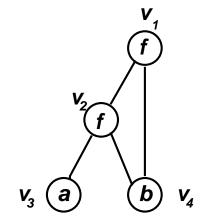
• DAG structures:

- G = (V, E) directed graph
- Labelling on vertices

 $\lambda(v)$: label of vertex v

 $\delta(v)$: outdegree of vertex v

- Edges leaving the vertex v are ordered (v[i]: denotes i-th successor of v)



$$\lambda(v_1) = \lambda(v_2) = f$$
 $\lambda(v_3) = a, \lambda(v_4) = b$
 $\delta(v_1) = \delta(v_2) = 2$
 $\delta(v_3) = \delta(v_4) = 0$
 $v_1[1] = v_2, v_2[2] = v_4$

- - -

Congruence closure of a DAG/Relation

Given:
$$G = (V, E)$$
 DAG + labelling $R \subseteq V \times V$

The congruence closure of R is the smallest relation R^c on V which is:

- reflexive
- symmetric
- transitive
- congruence:

If
$$\lambda(u) = \lambda(v)$$
 and $\delta(u) = \delta(v)$
and for all $1 \le i \le \delta(u)$: $(u[i], v[i]) \in R^c$
then $(u, v) \in R^c$.

Congruence closure of a relation

Recursive definition

$$\frac{(u,v)\in R}{(u,v)\in R^c}$$

$$(u, v) \in R^c$$

$$(u, v) \in R^c$$

$$(u, v) \in R^c$$

$$(u, v) \in R^c$$

$$(u, w) \in R^c$$

$$(u, w) \in R^c$$

$$\lambda(u) = \lambda(v)$$
 u , v have n successors and $(u[i], v[i]) \in R^c$ for all $1 \le i \le n$ $(u, v) \in R^c$

• The congruence closure of R is the smallest set closed under these rules

Congruence closure and UIF

Assume that we have an algorithm \mathbb{A} for computing the congruence closure of a graph G and a set R of pairs of vertices

- Use \mathbb{A} for checking whether $\bigwedge_{i=1}^n s_i \approx t_i \wedge \bigwedge_{j=1}^m s_j' \not\approx t_j'$ is satisfiable.
 - (1) Construct graph corresponding to the terms occurring in s_i , t_i , s'_j , t'_j Let v_t be the vertex corresponding to term t
 - (2) Let $R = \{(v_{s_i}, v_{t_i}) \mid i \in \{1, ..., n\}\}$
 - (3) Compute R^c .
 - (4) Output "Sat" if $(v_{s'_j}, v_{t'_j}) \notin R^c$ for all $1 \le j \le m$, otherwise "Unsat"

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s_j' \not\approx t_j'$ is satisfiable iff $[v_{s_j'}]_{R^c} \neq [v_{t_j'}]_{R^c}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s_j' \not\approx t_j'$ is satisfiable iff $[v_{s_j'}]_{R^c} \neq [v_{t_j'}]_{R^c}$ for all $1 \le j \le m$.

$\mathsf{Proof} \ (\Rightarrow)$

Assume \mathcal{A} is a Σ -structure such that $\mathcal{A} \models \bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s_j' \not\approx t_i'$.

We can show that $[v_s]_{R^c} = [v_t]_{R^c}$ implies that $\mathcal{A} \models s = t$ (Exercise).

(We use the fact that if $[v_s]_{R^c} = [v_t]_{R^c}$ then there is a derivation for $(v_s, v_t) \in R^c$ in the calculus defined before; use induction on length of derivation to show that $A \models s = t$.)

As $A \models s'_j \not\approx t'_j$, it follows that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$.

Congruence closure and UIF

Theorem 3.3.3 (Correctness)

 $\bigwedge_{i=1}^n s_i \approx t_i \land \bigwedge_{j=1}^m s_j' \not\approx t_j'$ is satisfiable iff $[v_{s_j'}]_{R^c} \neq [v_{t_j'}]_{R^c}$ for all $1 \leq j \leq m$.

Proof(\Leftarrow) Assume that $[v_{s'_j}]_{R^c} \neq [v_{t'_j}]_{R^c}$ for all $1 \leq j \leq m$. We construct a structure that satisfies $\bigwedge_{i=1}^n s_i \approx t_i \wedge \bigwedge_{j=1}^m s'_j \not\approx t'_j$

- Universe is quotient of V w.r.t. R^c plus new element 0.
- ullet c constant $\mapsto c_{\mathcal{A}} = [v_c]_{R^c}$.

$$\bullet f/n \mapsto f_{\mathcal{A}}([v_1]_{R^c}, \dots, [v_n]_{R^c}) = \begin{cases} [v_{f(t_1, \dots, t_n)}]_{R^c} & \text{if } v_{f(t_1, \dots, t_n)} \in V, \\ [v_{t_i}]_{R^c} = [v_i]_{R^c} & \text{for } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$$

well-defined because R^c is a congruence.

ullet It holds that $\mathcal{A} \models s_j' \notpprox t_j'$ and $\mathcal{A} \models s_i pprox t_i$

We will show how to algorithmically determine R^c next time.

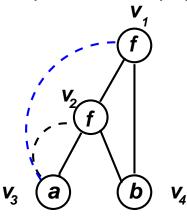
Given: G = (V, E) DAG + labelling

 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Example:

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$



$$R=\{(v_2,v_3)\}$$

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c ; close relation under congruence.

Task: Compute R^c

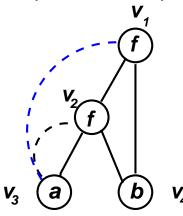
Given: G = (V, E) DAG + labelling

$$R \subseteq V \times V$$
; $(v, v') \in V^2$

Task: Check whether $(v, v') \in R^c$

Example:

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$



$$R = \{(v_2, v_3)\}$$

Idea:

- Start with the identity relation $R^c = Id$
- Successively add new pairs of nodes to R^c ; close relation under congruence.

Task: Decide whether $(v_1, v_3) \in R^c$

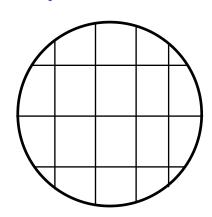
Given: G = (V, E) DAG + labelling

 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing $R_{i+1} :=$ congruence closure of $R_i \cup \{(u, v)\}$.

Representation:



- Congruence relation \mapsto corresponding partition

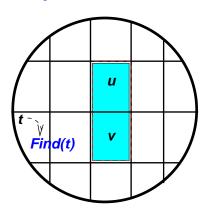
Given: G = (V, E) DAG + labelling

 $R \subseteq V \times V$

Task: Compute R^c (the congruence closure of R)

Idea: Recursively construct relations closed under congruence R_i (approximating R^c) by identifying congruent vertices u, v and computing $R_{i+1} :=$ congruence closure of $R_i \cup \{(u, v)\}$.

Representation:



- Congruence relation \mapsto corresponding partition
- Use procedures which operate on the partition:

FIND(u): unique name of equivalence class of uUNION(u, v) combines equivalence classes of u, vfinds repr. t_u , t_v of equiv.cl. of u, v; sets FIND(u) to t_v

MERGE(u, v)

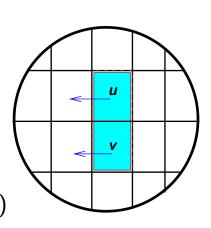
g

Input: G = (V, E) DAG + labelling

R relation on V closed under congruence $u, v \in V$

Output: the congruence closure of $R \cup \{(u, v)\}$

If FIND(u) = FIND(v) [same canonical representative] then Return If $FIND(u) \neq FIND(v)$ then [merge u, v; recursively-predecessors] $P_u := \text{set of all predecessors of vertices } w \text{ with } \mathsf{FIND}(w) = \mathsf{FIND}(u)$ $P_v := \text{set of all predecessors of vertices } w \text{ with } \mathsf{FIND}(w) = \mathsf{FIND}(v)$ **Call** UNION(u, v) [merge congruence classes] For all $(x, y) \in P_u \times P_v$ do: [merge congruent predecessors] if $FIND(x) \neq FIND(y)$ and CONGRUENT(x, y) then MERGE(x, y)



CONGRUENT(x, y)

if $\lambda(x) \neq \lambda(y)$ then Return FALSE

For $1 \le i \le \delta(x)$ if $FIND(x[i]) \ne FIND(y[i])$ then Return FALSE

Return TRUE.

Correctness

Proof:

(1) Returned equivalence relation is not too coarse

```
If x, y merged then (x, y) \in (R \cup \{(u, v)\})^c (UNION only on initial pair and on congruent pairs)
```

(2) Returned equivalence relation is not too fine

If x, y vertices s.t. $(x, y) \in (R \cup \{(u, v)\})^c$ then they are merged by the algorithm. Induction of length of derivation of (x, y) from $(R \cup \{(u, v)\})^c$

- (1) $(x, y) \in R$ OK (they are merged)
- (2) $(x, y) \notin R$. The only non-trivial case is the following:

$$\lambda(x) = \lambda(y)$$
, x, y have n successors x_i , y_i where

$$(x_i, y_i) \in (R \cup \{(u, v)\})^c$$
 for all $1 \le i \le b$.

Induction hypothesis: (x_i, y_i) are merged at some point (become equal during some call of UNION(a, b), made in some MERGE(a, b)) Successor of x equivalent to a (or b) before this call of UNION; same for y.

 \Rightarrow MERGE must merge x and y

Computing the Congruence Closure

Let G = (V, E) graph and $R \subseteq V \times V$

CC(G,R) computes the R^c :

- (1) $R_0 := \emptyset$; i := 1
- (2) while R contains "fresh" elements do:

pick "fresh" element $(u, v) \in R$

 $R_i := \mathsf{MERGE}(\mathsf{u}, \mathsf{v}) \text{ for } G \text{ and } R_{i-1}; \ i := i+1.$

Complexity: $O(n^2)$

Downey-Sethi-Tarjan congruence closure algorithm: more sophisticated version of MERGE (complexity $O(n \cdot logn)$)

Reference: G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure. Journal of the ACM, 27(2):356-364, 1980.

Decision procedure for the QF theory of equality

Signature: Σ (function symbols)

Problem: Test satisfiability of the formula

$$F = s_1 \approx t_1 \wedge \cdots \wedge s_n \approx t_n \wedge s'_1 \not\approx t'_1 \wedge \cdots \wedge s'_m \not\approx t'_m$$

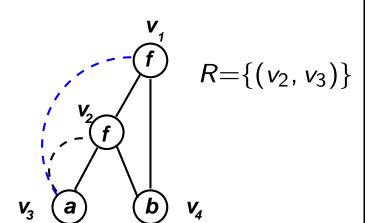
Solution: Let S_F be the set of all subterms occurring in F

- 1. Construct the DAG for S_F ; $R_0 = Id$
- 2. [Build R_n the congruence closure of $\{(v(s_1), v(t_1)), \ldots, (v(s_n), v(t_n))\}$] For $i \in \{1, \ldots, n\}$ do $R_i := \mathsf{MERGE}(v_{s_i}, v_{t_i})$ w.r.t. R_{i-1}
- 3. If $FIND(v_{s_j}) = FIND(v_{t_j})$ for some $j \in \{1, ..., m\}$ then return unsatisfiable
- 4. else [if FIND $(v_{s'_j}) \neq \text{FIND}(v_{t'_j})$ for all $j \in \{1, ..., m\}$] then return satisfiable

Example

$$f(a, b) \approx a \rightarrow f(f(a, b), b) \approx a$$

Test: unsatisfiability of $f(a, b) \approx a \wedge f(f(a, b), b) \not\approx a$



Task:

- Compute R^c
- Decide whether $(v_1, v_3) \in R^c$

Solution:

- 1. Construct DAG in the figure; $R_0 = Id$.
- 2. Compute $R_1 := MERGE((v_2, v_3))$

[Test representatives]

$$\mathsf{FIND}(v_2) = v_2 \neq v_3 = \mathsf{FIND}(v_3)$$

$$P_{v_2} := \{v_1\}; P_{v_3} := \{v_2\}$$

[Merge congruence classes]

UNION (v_2, v_3) : sets FIND (v_2) to v_3 .

[Compute and recursively merge predecessors]

Test:
$$FIND(v_1) = v_1 \neq v_3 = FIND(v_2)$$

 $CONGR(v_1, v_2)$

MERGE(v_1 , v_2): (different representatives) calls UNION(v_1 , v_2) which sets FIND(v_1) to v_3 .

3. Test whether $FIND(v_1) = FIND(v_3)$. Yes. Return unsatisfiable.