
Decision Procedures in Verification

First-Order Logic (3)

26.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution

Normal Forms and Skolemization

2

2.6 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall

contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

3

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.

4

Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

5

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set

of ground instances of N.

(Proof – completeness proof of resolution for first-order logic.)

6

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .

7

Consequences of Herbrans’s theorem

Decidability results.

• Formulae without function symbols and without equality

The Bernays-Schönfinkel Class ∃∗∀∗

8

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

9

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒P ∃x1 . . . ∃xn∀y1 . . . ∀ynF (x1, . . . , xn, y1, . . . , yn)

⇒S ∀y1 . . . ∀ymF (c1, . . . , cn, y1, . . . , yn)

⇒K ∀y1 . . . ∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

10

The Bernays-Schönfinkel Class

Σ = (Ω,Π), Ω is a finite set of constants

The Bernays-Schönfinkel class consists only of sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ymF (x1, . . . , xn, y1, . . . , yn)

Idea: CNF translation:

∃x1∀y1F1 ∧ . . . ∃xn∀ynFn

⇒∗
K
∀y1 . . . ∀ym

∧∨
Li ((c1, . . . , cn, y1, . . . , yn)

c1, . . . , cn are tuples of Skolem constants

The Herbrand Universe is finite 7→ decidability

11

Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

12

Variable-free Horn clauses
Data structures

Atoms P1, . . . ,Pn 7→ {1, . . . , n}

neg-occ-list(A): list of all clauses in which A occurs negatively

pos-occ-list(A): list of all clauses in which A occurs positively

Clause: P1 P2 . . . Pn counter

neg neg pos ↑

↑ number of literals

first-active-literal (fal): first literal not marked as deleted.

atom status: pos (deduced as positive unit clause)

neg (deduced as negative unit clause)

nounit (otherwise)

13

Variable-free Horn clauses

Input: Set N of Horn formulae

Step 1. Collect unit clauses; check if complementary pairs exist

forall C ∈ N do

if is-unit(C) then begin const. time

L := first-active-literal(C) const. time

if state(atom(L)) = nounit then state(atom(L)) = sign(L) const. time

push(atom(L), stack)

else if state(atom(L)) 6= sign(L) then return false

14

Variable-free Horn clauses
2. Process the unit clauses in the stack

while stack 6= ∅ do

begin A := top(stack); pop(stack)

if state(A) = pos then delete-literal-list := neg-oc-list(A) O(# neg-oc-list)

else delete-literal-list := pos-oc-list(A) O(# pos-oc-list)

endif

for all C in delete-literal-list do

if state(A) = pos then delete-literal(A,C) const. time + nfal - ofal

if state(A) = neg then delete-literal(¬ A,C) const. time + nfal - ofal

if unit(C) then L1 := first-active-literal(C) const. time

if state(atom(L1)) = nounit then state(atom(L1)) = sign(L1),

L1 → stack

elseif state(atom(L1)) 6= sign(L1) then return false

endif

end

15

Tractable fragments of FOL

We showed that satisfiability of any finite set of ground Horn clauses

can be checked in PTIME (linear time)

• Similar fragment of the Bernays-Schönfinkel class?

16

Motivation: Deductive Databases

Deductive database

Inference rules:

Facts:

Query:

17

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

18

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

19

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

20

Motivation: Deductive Databases

Deductive database Example: reachability in graphs

Inference rules:
S(x)

R(x)

R(x) E (x , y)

R(y)

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)

Query: R(d)

c
a

b

d

S(a),E (a, c),E (a, d),E (c, d),E (b, c),

R(a),R(c),R(d)

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

21

Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

F |=K G iff K ∪ F |= G iff K ∪ F ∪ ¬G |=⊥

Note: S ,E stored relations (Extensional DB)

R defined relation (Intensional DB)

22

Motivation: Deductive Databases

Deductive database 7→ Datalog (Horn clauses, no function symbols)

Inference rules: S(x) → R(x) R(x) ∧ E (x , y) → R(y)
︸ ︷︷ ︸

set K of Horn clauses

Facts: S(a),E (a, c),E (c, d),E (d , c),E (b, c)
︸ ︷︷ ︸

set F of ground atoms

Query: R(d)
︸ ︷︷ ︸

ground atom G

Ex:

S(a) S(x) → R(x)

R(a) E(a, c) R(x) ∧ E(x , y) → R(y)

R(c) E(c, d) R(x) ∧ E(x , y) → R(

R(d)

23

Ground entailment for function-free Horn clauses

Assumption:

The signature does not contain function symbols of arity ≥ 1.

Given:

• Set H of (function-free) Horn clauses

• Ground Horn clause G =
∧

Ai → A.

The following are equivalent:

(1) H |=
∧

Ai → A

(2) H ∧
∧

Ai |= A

(3) H ∧
∧

Ai ∧ ¬A |=⊥

Decidable in PTIME in the size of G for a fixed H.

24

Generalization: Local theories

[McAllester,Givan’92], [Basin,Ganzinger’96,01], [Ganzinger’01]

Assumption: the signature is allowed to contain function symbols

Definition. H set of Horn clauses is called local iff for every ground clause

C the following are equivalent:

(1) H |= C

(2) H[C] |= C ,

where H[C] is the family of all instances of H in which the variables are

replaced by ground subterms occurring in H or C .

Theorem. For a fixed local theory H, testing ground entailment w.r.t. H is

in PTIME.

Will be discussed in more detail in the exercises

25

2.7 General Resolution

Propositional resolution:

refutationally complete,

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.

26

Propositional resolution: reminder

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

27

Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

Res is sound and refutationally complete (for all sets of ground

clauses)

28

Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

29

Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

30

Resolution Calculus Res
≻
S

Ordered resolution with selection

C ∨ A D ∨ ¬A

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

31

Resolution for ground clauses

Let ≻ be a total and well-founded ordering on ground atoms, and S

a selection function.

Theorem. Res≻S is sound and refutationally complete for all sets of

ground clauses.

Soundness: sufficient to show that

(1) C ∨ A,D ∨ ¬A |= C ∨ D

(2) C ∨ A ∨ A |= C ∨ A

Completeness: Let ≻ be a clause ordering, let N be saturated

wrt. Res≻S , and suppose that ⊥ 6∈ N. Then I≻N |= N, where I≻N is

incrementally constructed as follows:

32

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

33

General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary literals.

34

General Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y] [b/y] [a/x ′]

[f (a, x)/z]

35

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general

atoms;

• Only compute most general (minimal) unifiers.

36

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.

37

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E if siσ = tiσ for

all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

38

Unification after Martelli/Montanari

(1) t
.
= t,E ⇒MM E

(2) f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

(3) f (. . .)
.
= g(. . .),E ⇒MM ⊥

(4) x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

(5) x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

(6) t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X

39

Examples

Example 1:

{x
.
= f (a), g(x , x)

.
= g(x , y)} ⇒4

{x
.
= f (a), g(f (a), f (a))

.
= g(f (a), y)} ⇒2

{x
.
= f (a), f (a)

.
= f (a), f (a)

.
= y} ⇒1

{x
.
= f (a), f (a)

.
= y} ⇒6

{x
.
= f (a), y

.
= f (a)}

Example 2:

{x
.
= f (a), g(x , x)

.
= h(x , y)} ⇒3⊥

Example 3:

{f (x , x)
.
= f (y , g(y))} ⇒2

{x
.
= y , x

.
= g(y)} ⇒4

{x
.
= y , y

.
= g(y)} ⇒5⊥

40

MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

41

Main Unification Theorem

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof: See e.g. Baader & Nipkow: Term rewriting and all that.

Problem: exponential growth of terms possible

Example:

E = {x1 ≈ f (x0, x0), x2 ≈ f (x1, x1), . . . , xn ≈ f (xn−1, xn−1)}

m.g.u. [x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), ...]

xi 7→ complete binart tree of heigth i

Solution: Use acyclic term graphs; union/find algorithms

42

