
Decision Procedures in Verification

First-Order Logic (4)

3.12.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now:

Syntax (one-sorted signatures vs. many-sorted signatures)

Semantics

Structures (also many-sorted)

Models, Validity, and Satisfiability

Entailment and Equivalence

Theories (Syntactic vs. Semantics view)

Herbrand models 7→ The Bernays-Schönfinkel class

Algorithmic Problems

Decidability/Undecidability

Methods: Resolution

2

2.7 General Resolution

Propositional resolution:

refutationally complete,

clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.

3

Propositional resolution: reminder

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

4

Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

Res is sound and refutationally complete (for all sets of ground

clauses)

5

Resolution for ground clauses

• Refinements with orderings and selection functions:

Need: - well-founded ordering on ground atomic formulae/literals

- selection function (for negative literals)

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

6

Resolution Calculus Res
≻
S

Ordered resolution with selection

C ∨ A D ∨ ¬A

C ∨ D

if

1. A ≻ C ;

2. nothing is selected in C by S;

3. ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

Ordered factoring

C ∨ A ∨ A

(C ∨ A)

if A is maximal in C and nothing is selected in C .

7

Resolution for ground clauses

Let ≻ be a total and well-founded ordering on ground atoms, and S

a selection function.

Theorem. Res≻S is sound and refutationally complete for all sets of

ground clauses.

Soundness: sufficient to show that

(1) C ∨ A,D ∨ ¬A |= C ∨ D

(2) C ∨ A ∨ A |= C ∨ A

Completeness: Let ≻ be a clause ordering, let N be saturated

wrt. Res≻S , and suppose that ⊥ 6∈ N. Then I≻N |= N, where I≻N is

incrementally constructed as follows:

8

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary literals.

9

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general

atoms;

• Only compute most general (minimal) unifiers.

10

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.

11

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E if siσ = tiσ for

all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

12

Unification after Martelli/Montanari

(1) t
.
= t,E ⇒MM E

(2) f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

(3) f (. . .)
.
= g(. . .),E ⇒MM ⊥

(4) x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

(5) x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

(6) t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X

13

Examples

Example 1:

{x
.
= f (a), g(x , x)

.
= g(x , y)} ⇒4

{x
.
= f (a), g(f (a), f (a))

.
= g(f (a), y)} ⇒2

{x
.
= f (a), f (a)

.
= f (a), f (a)

.
= y} ⇒1

{x
.
= f (a), f (a)

.
= y} ⇒6

{x
.
= f (a), y

.
= f (a)}

Example 2:

{x
.
= f (a), g(x , x)

.
= h(x , y)} ⇒3⊥

Example 3:

{f (x , x)
.
= f (y , g(y))} ⇒2

{x
.
= y , x

.
= g(y)} ⇒4

{x
.
= y , y

.
= g(y)} ⇒5⊥

14

MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

15

Main Unification Theorem

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof: See e.g. Baader & Nipkow: Term rewriting and all that.

Problem: exponential growth of terms possible

Example:

E = {x1 ≈ f (x0, x0), x2 ≈ f (x1, x1), . . . , xn ≈ f (xn−1, xn−1)}

m.g.u. [x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), ...]

xi 7→ complete binart tree of heigth i

Solution: Use acyclic term graphs; union/find algorithms

16

Lifting Lemma

Lemma 2.31

Let C and D be variable-disjoint clauses. If

C

σ

��

D

ρ

��

Cσ Dρ

C ′ [propositional resolution]

then there exists a substitution τ such that

C D

C ′′

ρ

��

C ′ = C ′′
τ

[general resolution]

17

Lifting Lemma

An analogous lifting lemma holds for factorization.

18

Saturation of Sets of General Clauses

Corollary 2.32:

Let N be a set of general clauses saturated under Res, i.e., Res(N) ⊆ N.

Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

19

Saturation of Sets of General Clauses

Corollary 2.32:

Let N be a set of general clauses saturated under Res, i.e., Res(N) ⊆ N.

Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise

make them disjoint, and this renaming process changes neither Res(N) nor GΣ(N).)

Let C ′
∈ Res(GΣ(N)), meaning (i) there exist resolvable ground instances Cσ and

Dρ of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cσ of C .

Case (i): By the Lifting Lemma, C and D are resolvable with a resolvent C ′′ with

C ′′
τ = C ′, for a suitable substitution τ . As C ′′

∈ N by assumption, we obtain that

C ′
∈ GΣ(N).

Case (ii): Similar.

20

Herbrand’s Theorem

Lemma 2.33:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.34:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.

21

Herbrand’s Theorem

Theorem 2.35 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res
∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res
∗(N))

⇒ IGΣ(Res
∗(N)) |= GΣ(Res

∗(N)) (Thm. 2.23; Cor. 2.32)

⇒ IGΣ(Res
∗(N)) |= Res

∗(N) (Lemma 2.34)

⇒ IGΣ(Res
∗(N)) |= N (N ⊆ Res

∗(N))

22

The Theorem of Löwenheim-Skolem

Theorem 2.36 (Löwenheim–Skolem):

Let Σ be a countable signature and let S be a set of closed Σ-formulas.

Then S is satisfiable iff S has a model over a countable universe.

Proof:

If both X and Σ are countable, then S can be at most countably

infinite. Now generate, maintaining satisfiability, a set N of clauses

from S . This extends Σ by at most countably many new Skolem

functions to Σ′. As Σ′ is countable, so is TΣ′ , the universe of

Herbrand-interpretations over Σ′. Now apply Theorem 2.35.

23

Refutational Completeness of General Resolution

Theorem 2.37:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.32: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.33/2.34; Theorem 2.35)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N

24

Compactness of Predicate Logic

Theorem 2.38 (Compactness Theorem for First-Order Logic):

Let Φ be a set of first-order formulas.

Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof:

The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable

and let N be the set of clauses obtained by Skolemization and CNF

transformation of the formulas in Φ. Clearly Res∗(N) is unsatisfiable.

By Theorem 2.37, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for

some n ∈ N. Consequently, ⊥ has a finite resolution proof B of

depth ≤ n. Choose Ψ as the subset of formulas in Φ such that the

corresponding clauses contain the assumptions (leaves) of B.

25

2.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 2.23) one

only needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

26

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

27

Resolution Calculus Res
≻
S

In the completeness proof, we talk about (strictly) maximal literals of

ground clauses.

In the non-ground calculus, we have to consider those literals that

correspond to (strictly) maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only if there

exists a ground substitution σ such that for all L′ in C : Lσ � L′
σ

[Lσ ≻ L′
σ].

28

Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal in

Dσ.

29

Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is selected

in C .

30

Soundness and Refutational Completeness

Theorem 2.39:

Let ≻ be an atom ordering and S a selection function such that

Res≻S (N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider first the

propositional level: Construct a candidate model IN as for unrestricted

resolution, except that clauses C in N that have selected literals

are not productive, even when they are false in IC and when their

maximal atom occurs only once and positively.

The result for general clauses follows using the lifting lemma.

31

Craig Interpolation

Theorem: Res≻S is sound and refutationally complete.

A theoretical application of ordered resolution is Craig- Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that F |= G .

Then there exists a formula H (called the interpolant for F |= G),

such that H contains only propostional variables occurring both in F

and in G , and such that F |= H and H |= G .

32

Craig Interpolation

Proof:

Translate F and ¬G into CNF.

Let N and M, resp., denote the resulting clause set.

Choose an atom ordering ≻ for which the propositional variables that occur in F but

not in G are maximal.

Saturate N into N∗ wrt. Res≻
S

with an empty selection function S.

Then saturate N∗
∪ M wrt. Res≻

S
to derive ⊥.

As N∗ is already saturated, due to the ordering restrictions only inferences need to be

considered where premises, if they are from N∗, only contain symbols that also occur

in G .

The conjunction of these premises is an interpolant H.

The theorem also holds for first-order formulas. For universal formulas the above proof

can be easily extended. In the general case, a proof based on resolution technology is

more complicated because of Skolemization.

33

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Task: Is the union of the two databases consistent? If not: locate error

34

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

35

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

F1 |= ¬F2 (assume we are in prop. logic)

36

Applications of Craig Interpolation

Modular databases

Given: Two databases (different but possibly overlapping languages)

Logical modeling: F1 ∧ F2

Task: Is the union of the two databases consistent? If not: locate error

F1 ∧ F2 |=⊥

F1 |= ¬F2 (assume we are in prop. logic)

Craig Interpolation (propositional case)

There exists I containing only propositional variables occurring

in F1 and F2 such that:

F1 |= I and I |= ¬F2

37

Applications of Craig Interpolation

Reasoning in combinations of theories

Given: Two theories (different but possibly overlapping languages)

s.t. decision procedures for component theories for certain fragments exist

Task: Reason in the combination of the two theories

Question: Which information needs to be exchanged between provers?

Answer: Craig Interpolation

The case of two disjoint theories will be discussed later in this lecture

38

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

φI ∧ T1 ∧ T2 ∧ · · · ∧ Tk ∧ φE

39

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

(φI ∧ T1)
︸ ︷︷ ︸

F1

∧ (T2 ∧ · · · ∧ Tk ∧ φE)
︸ ︷︷ ︸

F2

Not reachable: F1 ∧ F2 |=⊥

40

Applications of Craig Interpolation

Verification (programs or hardware)

Model programs as transition systems.

- Sets of states expressed as formulae

- Transitions expressed as formulae T

Question:

Can a state in a certain set of states E (error)

be reached from some state in a set I (initial) in k steps?

(φI ∧ T1)
︸ ︷︷ ︸

F1

∧ (T2 ∧ · · · ∧ Tk ∧ φE)
︸ ︷︷ ︸

F2

Not reachable: F1 ∧ F2 |=⊥

Interpolant: I overapproximates the set of successors of φI .

41

Goal

Goal: Make resolution efficient

Identify clauses which are not needed and can be discarded

42

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed by

other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

43

Recall

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.

44

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C are

redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples

nor productive.

Note: The same ordering ≻ is used for ordering restrictions and for

redundancy (and for the completeness proof).

45

Examples of Redundancy

Proposition 2.40:

• C tautology (i.e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}

(Under certain conditions one may also use non-strict subsumption,

but this requires a slightly more complicated definition of redundancy.)

46

Saturation up to Redundancy

N is called saturated up to redundancy (wrt. Res≻S)

:⇔ Res≻S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.41:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

47

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate model I≻N for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻N

The premises of “essential” inferences are either minimal counterex-

amples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.39.

48

Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof:

(i) Let C ∈ Red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such

that Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

We assumed that N ⊆ M, so we know that C1, . . . ,Cn ∈ M.

Thus: there exist C1, . . . ,Cn ∈ M, n ≥ 0 such that Ci ≺ C for all

i = 1, . . . , n and C1, . . . ,Cn |= C . Therefore, C ∈ Red(M).

49

Monotonicity Properties of Redundancy

Theorem 2.42:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof (Idea):

(ii) Let C ∈ Red(N). Then there exist C1, . . . ,Cn ∈ N, n ≥ 0 such that

Ci ≺ C for all i = 1, . . . , n and C1, . . . ,Cn |= C .

Case 1: For all i , Ci 6∈ M. Then C ∈ Red(N\M).

Case 2: For some i , Ci ∈ M ⊆ Red(N). Then for every such index i there

exist C i
1, . . . ,C

i
ni

∈ N such that C i
j ≺ Ci and C i

1, . . . ,C
i
ni

|= Ci . We can

replace Ci above with C i
1, . . . ,C

i
ni
. We can iterate the procedure until

none of the Ci ’s are in M (termination guaranteed by the fact that ≻ is

well-founded).

50

Some theorem provers for first-order logic

• SPASS http://www.spass-prover.org/

• E http://www4.informatik.tu-muenchen.de/∼schulz/E/E.html

• Vampire http://www.vprover.org/

51

Decidable subclasses of first-order logic

52

Applications

Use ordered resolution with selection to give a decision procedure

for the Ackermann class.

53

The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒S ∀xF (c1, . . . , cn, x , f1(x), . . . , fm(x))

⇒K ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

c1, . . . , cn are Skolem constants

f1, . . . , fm are unary Skolem functions

54

The Ackermann class

Σ = (Ω,Π), Ω is a finite set of constants

The Ackermann class consists of all sentences of the form

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

Idea: CNF translation:

∃x1 . . . ∃xn∀x∃y1 . . . ∃ymF (x1, . . . , xn, x , y1, . . . , ym)

⇒∗ ∀x
∧∨

Li (c1, . . . , cn, x , f1(x), . . . , fm(x))

The clauses are in the following classes:

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

55

The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, f1, . . . , fn) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 1: G ∪ V ∪ Gf ∪ Vf finite set of clauses (up to renaming of

variables).

56

The Ackermann class

G = G(c1, . . . , cn) ground clauses without function symbols

V = V (x , c1, . . . , cn) clauses with one variable and without function symbols

Gf = G(c1, . . . , cn, fi) ground clauses with function symbols

Vf = V (x , c1, . . . , cn, f1(x), . . . , fn(x)) clauses with a variable & function symbols

Term ordering

f (t) ≻ t; terms containing function symbols larger than those who do not.

B ≻ A iff exists argument u of B such that every argument t of A: u ≻ t

Ordered resolution: G ∪ V ∪ Gf ∪ Vf is closed under ordered resolution.

G ,G 7→ G ; G ,V 7→ G ; G ,Gf 7→ nothing; G ,Vf 7→ nothing

V ,V 7→ V ∪ G ; V ,Gf 7→ G ∪ Gf ; V ,Vf 7→ G ∪ V ∪ Gf ∪ Vf

Gf ,Gf 7→ Gf ; Gf ,Vf 7→ Gf ∪ G ; Vf ,Vf 7→ G ∪ V ∪ Vf ∪ Gf

Observation 2: No clauses with nested function symbols can be generated.

57

The Ackermann Class

Conclusion:

Resolution (with implicit factorization) will always terminate if the input

clauses are in the class defined before.

Resolution can be used as a decision procedure to check the satisfiability of

formulae in the Ackermann class.

58

The Monadic Class

Monadic first-order logic (MFO) is FOL (without equality) over purely

relational signatures Σ = (Ω,Π), where Ω = ∅, and every p ∈ Π has arity 1.

Abstract syntax:

Φ := ⊤ | P(x) | Φ1 ∧ Φ2 | ¬Φ | Φ1 ∨ Φ2 | ∀xΦ | ∃xΦ

Idea. Let Φ be a MFO formula with k predicate symbols.

Let A = (UA, {pA}p∈Π) be a Σ-algebra. The only way to distinguish the

elements of UA is by the atomic formulae p(x), p ∈ Π.

• the elements which a ∈ UA which belong to the same pA’s, p ∈ Π

can be collapsed into one single element.

• if Π = {p1, . . . , pk} then what remains is a finite structure with at

most 2k elements.

• the truth value of a formula: computed by evaluating all subformulae.

59

