Decision Procedures for Verification

Part 1. Propositional Logic (1)

25.10.2018

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum
Fitting: First-Order Logic and Automated Theorem Proving, Springer

Part 1: Propositional Logic

Propositional logic

- logic of truth values
- decidable (but NP-complete)
- can be used to describe functions over a finite domain
- important for hardware applications (e.g., model checking)

1.1 Syntax

- propositional variables
- logical symbols
\Rightarrow Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.
We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

F_{Π} is the set of propositional formulas over Π defined as follows:
$F, G, H \quad::=\quad \perp$
| T
(falsum)
(verum)
| $\quad P, \quad P \in \Pi \quad$ (atomic formula)
$\mid \quad \neg F$
| $\quad(F \wedge G)$
| $\quad(F \vee G)$
$(F \rightarrow G)$
$(F \leftrightarrow G)$
(negation)
(conjunction)
(disjunction)
(implication)
(equivalence)

Notational Conventions

- We omit brackets according to the following rules:
$-\neg>_{p} \wedge>_{p} \vee>_{p} \rightarrow>_{p} \leftrightarrow \quad$ (binding precedence:
- \vee and \wedge are associative and commutative

1.2 Semantics

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0 .

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

$$
\mathcal{A}: \Pi \rightarrow\{0,1\} .
$$

where $\{0,1\}$ is the set of truth values.

Truth Value of a Formula in \mathcal{A}

Given a Π-valuation \mathcal{A}, the function $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow\{0,1\}$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(\perp) & =0 \\
\mathcal{A}^{*}(\top) & =1 \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}(\neg F) & =1-\mathcal{A}^{*}(F) \\
\mathcal{A}^{*}(F \rho G) & =\mathrm{B}_{\rho}\left(\mathcal{A}^{*}(F), \mathcal{A}^{*}(G)\right) \\
& \text { with } \mathrm{B}_{\rho} \text { the Boolean function associated with } \rho
\end{aligned}
$$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^{*}.

Truth Value of a Formula in \mathcal{A}

Example: Let's evaluate the formula

$$
(P \rightarrow Q) \wedge(P \wedge Q \rightarrow R) \rightarrow(P \rightarrow R)
$$

w.r.t. the valuation \mathcal{A} with

$$
\mathcal{A}(P)=1, \mathcal{A}(Q)=0, \mathcal{A}(R)=1
$$

(On the blackboard)

1.3 Models, Validity, and Satisfiability

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F)=1
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all } \Pi \text {-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise F is called unsatisfiable (or contradictory).

A set N of formulae is satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$ for all $F \in N$.
Otherwise N is called unsatisfiable (or contradictory).

Example

$F=(A \vee C) \wedge(B \vee \neg C)$

A	B	C	$(A \vee C)$	$\neg C$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	1	1

Let $\mathcal{A}:\{A, B, C\} \rightarrow\{0,1\}$ with $\mathcal{A}(A)=0, \mathcal{A}(B)=1, \mathcal{A}(C)=1$.
$\mathcal{A} \vDash(A \vee C), \quad \mathcal{A} \vDash(B \vee \neg C)$
$\mathcal{A} \vDash(A \vee C) \wedge(B \vee \neg C)$
$\mathcal{A} \vDash\{(A \vee C),(B \vee \neg C)\}$

1.3 Models, Validity, and Satisfiability

Examples:

$F \rightarrow F$ and $F \vee \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable
$F \wedge \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

Example

$F=(A \vee C) \wedge(B \vee \neg C)$

A	B	C	$(A \vee C)$	$\neg C$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$
0	0	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	0
1	1	0	1	1	1	1
1	1	1	1	0	1	1

F is not valid:

$$
\mathcal{A}_{1}(F)=0 \text { für } \mathcal{A}_{1}:\{A, B, C\} \rightarrow\{0,1\} \operatorname{mit} \mathcal{A}(A)=\mathcal{A}(B)=\mathcal{A}(C)=0 .
$$

F is satisfiable:

$$
\mathcal{A}_{2}(F)=1 \text { für } \mathcal{A}:\{A, B, C\} \rightarrow\{0,1\} \text { mit } \mathcal{A}(A)=0, \mathcal{A}(B)=1, \mathcal{A}(C)=1 .
$$

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π-valuations \mathcal{A}, whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.
F and G are called equivalent if for all Π-valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Example

$$
F=(A \vee C) \wedge(B \vee \neg C) \quad G=(A \vee B)
$$

Check if $F \models G$

A	B	C	$(A \vee C)$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$	$(A \vee B)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Example

$$
F=(A \vee C) \wedge(B \vee \neg C) \quad G=(A \vee B)
$$

Check if $F \models G$

A	B	C	$(A \vee C)$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$	$(A \vee B)$
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Example

$$
F=(A \vee C) \wedge(B \vee \neg C) \quad G=(A \vee B)
$$

Check if $F \models G$ Yes, $F \models G$

A	B	C	$(A \vee C)$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$	$(A \vee B)$
0	0	1	1	0	0	0
0	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	0	1	0	1
1	0	1	1	0	0	1
1	0	0	1	1	1	1
1	1	1	1	1	1	1
1	1	0	1	1	1	1

Example

$$
F=(A \vee C) \wedge(B \vee \neg C) \quad G=(A \vee B)
$$

Check if $F \models G$ Yes, $F \models G$
... But it is not true that $G \vDash F$ (Notation: $G \not \equiv F$)

A	B	C	$(A \vee C)$	$(B \vee \neg C)$	$(A \vee C) \wedge(B \vee \neg C)$	$(A \vee B)$
0	0	1	1	0	0	0
0	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	0	0	1	0	1
1	0	1	1	0	0	1
1	0	0	1	1	1	1
1	1	1	1	1	1	1
1	1	0	1	1	1	1
				1		

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π-valuations \mathcal{A}, whenever $\mathcal{A} \models F$ then $\mathcal{A} \models G$.
F and G are called equivalent if for all Π-valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1:
F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Entailment and Equivalence

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π-valuations \mathcal{A} : if $\mathcal{A} \models G$ for all $G \in N$, then $\mathcal{A} \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

$$
F \text { valid } \Leftrightarrow \neg F \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity checker) it is sufficient to design a checker for unsatisfiability.
Q : In a similar way, entailment $N \models F$ can be reduced to unsatisfiability. How?

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.4:

$$
N \models F \Leftrightarrow N \cup\{\neg F\} \text { unsatisfiable }
$$

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A}.

If F contains n distinct propositional variables, then it is sufficient to check 2^{n} valuations to see whether F is satisfiable or not.
\Rightarrow truth table.
So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

Checking Unsatisfiability

The satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

For sets of propositional formulae of a certain type, satisfiability can be checked in polynomial time:

Examples: 2SAT, Horn-SAT (will be discussed in the exercises)
Dichotomy theorem. Schaefer [Schaefer, STOC 1978] identified six classes of sets S of Boolean formulae for which $\operatorname{SAT}(S)$ is in PTIME. He proved that all other types of sets of formulae yield an NP-complete problem.

Substitution Theorem

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F occurs as a subformula.

Then H is equivalent to H^{\prime} where H^{\prime} is obtained from H by replacing the occurrence of the subformula F by G.
(Notation: $H=H[F], H^{\prime}=H[G]$.)

Proof: By induction over the formula structure of H.

Some Important Equivalences

Proposition 1.6:

The following equivalences are valid for all formulas F, G, H :

$$
\begin{array}{rlrl}
(F \wedge F) & \leftrightarrow & & \\
(F \vee F) & \leftrightarrow F & & \text { (Idempotency) } \\
(F \wedge G) & \leftrightarrow(G \wedge F) & & \\
(F \vee G) & \leftrightarrow(G \vee F) & & \\
(F \wedge(G \wedge H)) & \leftrightarrow((F \wedge G) \wedge H) & & \\
(F \vee(G \vee H)) & \leftrightarrow((F \vee G) \vee H) & \text { (Associativity) } \\
(F \wedge(G \vee H)) \leftrightarrow((F \wedge G) \vee(F \wedge H)) & & \\
(F \vee(G \wedge H)) & \leftrightarrow((F \vee G) \wedge(F \vee H)) & \text { (Distributivity) }
\end{array}
$$

Some Important Equivalences

Proposition 1.7:

The following equivalences are valid for all formulas F, G, H :

$$
\begin{array}{rlrl}
& (F \wedge(F \vee G)) \leftrightarrow F & & \\
& (F \vee(F \wedge G)) \leftrightarrow F & & \text { (Absorption) } \\
& (\neg \neg F) \leftrightarrow F & & \text { (Double Negation) } \\
\neg(F \wedge G) \leftrightarrow(\neg F \vee \neg G) & & \\
\neg(F \vee G) \leftrightarrow(\neg F \wedge \neg G) & & \text { (De Morgan's Laws) }
\end{array}
$$

$(F \wedge G) \leftrightarrow F$, if G is a tautology
$(F \vee G) \leftrightarrow \top$, if G is a tautology
(Tautology Laws)
$(F \wedge G) \leftrightarrow \perp$, if G is unsatisfiable
$(F \vee G) \leftrightarrow F$, if G is unsatisfiable (Tautology Laws)

1.4 Normal Forms

We define conjunctions of formulas as follows:

$$
\begin{aligned}
& \bigwedge_{i=1}^{0} F_{i}=\mathrm{T} \\
& \bigwedge_{i=1}^{1} F_{i}=F_{1} . \\
& \bigwedge_{i=1}^{n+1} F_{i}=\bigwedge_{i=1}^{n} F_{i} \wedge F_{n+1} .
\end{aligned}
$$

and analogously disjunctions:

$$
\begin{aligned}
& \bigvee_{i=1}^{0} F_{i}=\perp . \\
& \bigvee_{i=1}^{1} F_{i}=F_{1} . \\
& \bigvee_{i=1}^{n+1} F_{i}=\bigvee_{i=1}^{n} F_{i} \vee F_{n+1} .
\end{aligned}
$$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:
$\begin{array}{lr}\perp & \text { the empty clause } \\ P & \text { positive unit clause } \\ \neg P & \text { negative unit clause } \\ P \vee Q \vee R & \text { positive clause } \\ P \vee \neg Q \vee \neg R & \text { clause }\end{array}$
$P \vee P \vee \neg Q \vee \neg R \vee R \quad$ allow repetitions/complementary literals

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:
are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$.

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$.

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is known to be coNP-complete.

Conversion to CNF/DNF

Proposition 1.8:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:
We consider the case of CNF.
Apply the following rules as long as possible (modulo associativity and commutativity of \wedge and \vee):

Step 1: Eliminate equivalences:

$$
(F \leftrightarrow G) \Rightarrow_{k}(F \rightarrow G) \wedge(G \rightarrow F)
$$

Conversion to CNF/DNF

Step 2: Eliminate implications:

$$
(F \rightarrow G) \Rightarrow_{K}(\neg F \vee G)
$$

Step 3: Push negations downward:

$$
\begin{aligned}
& \neg(F \vee G) \Rightarrow_{K} \quad(\neg F \wedge \neg G) \\
& \neg(F \wedge G) \Rightarrow_{K} \quad(\neg F \vee \neg G)
\end{aligned}
$$

Step 4: Eliminate multiple negations:

$$
\neg \neg F \Rightarrow{ }_{K} F
$$

The formula obtained from a formula F after applying steps $1-4$ is called the negation normal form (NNF) of F

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

$$
(F \wedge G) \vee H \Rightarrow_{k}(F \vee H) \wedge(G \vee H)
$$

Step 6: Eliminate \top and \perp :

$$
\begin{aligned}
(F \wedge \top) & \Rightarrow_{k} F \\
(F \wedge \perp) & \Rightarrow_{k} \perp \\
(F \vee \top) & \Rightarrow_{k} \top \\
(F \vee \perp) & \Rightarrow_{k} F \\
\neg \perp & \Rightarrow_{k} \top \\
\neg \top & \Rightarrow_{k} \perp
\end{aligned}
$$

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal
"find a formula G in CNF such that $\models F \leftrightarrow G$ "
is unpractical.

But if we relax the requirement to
"find a formula G in CNF such that $F \models \perp$ iff $G \models \perp "$
we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:
A formula $F\left[F^{\prime}\right]$ is satisfiable iff $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable (where P new propositional variable that works as abbreviation for F^{\prime}).

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F^{\prime}$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow. A subformula F^{\prime} of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.9:

Let $F\left[F^{\prime}\right]$ be a formula containing neither \rightarrow nor \leftrightarrow; let P be a propositional variable not occurring in $F\left[F^{\prime}\right]$.

If F^{\prime} has positive polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(P \rightarrow F^{\prime}\right)$ is satisfiable.

If F^{\prime} has negative polarity in F, then $F\left[F^{\prime}\right]$ is satisfiable if and only if $F[P] \wedge\left(F^{\prime} \rightarrow P\right)$ is satisfiable.

Proof:
Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let $F=\left(Q_{1} \wedge Q_{2}\right) \vee\left(R_{1} \wedge R_{2}\right)$.
The following are equivalent:

- $F \models \perp$
- $P_{F} \wedge\left(P_{F} \leftrightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \leftrightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$

$$
\wedge\left(P_{R_{1} \wedge R_{2}} \leftrightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp
$$

- $P_{F} \wedge\left(P_{F} \rightarrow\left(P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(P_{Q_{1} \wedge Q_{2}} \rightarrow\left(Q_{1} \wedge Q_{2}\right)\right)\right.$ $\wedge\left(P_{R_{1} \wedge R_{2}} \rightarrow\left(R_{1} \wedge R_{2}\right)\right) \models \perp$
- $P_{F} \wedge\left(\neg P_{F} \vee P_{Q_{1} \wedge Q_{2}} \vee P_{R_{1} \wedge R_{2}}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{1}\right) \wedge\left(\neg P_{Q_{1} \wedge Q_{2}} \vee Q_{2}\right)$ $\left.\wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{1}\right) \wedge\left(\neg P_{R_{1} \wedge R_{2}} \vee R_{2}\right)\right) \models$

Decision Procedures for Satisfiability

- Simple Decision Procedures truth table method
- The Resolution Procedure
- The Davis-Putnam-Logemann-Loveland Algorithm

1.5 Inference Systems and Proofs

Inference systems 「 (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), \quad n \geq 0,
$$

called inferences or inference rules, and written
premises

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k: F_{i} \in N$, or else there exists an inference $\left(F_{i_{1}}, \ldots, F_{i_{n_{i}}}, F_{i}\right)$ in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ :
$N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \Rightarrow F_{1}, \ldots, F_{n} \models F
$$

Γ is called complete $: \Leftrightarrow$

$$
N \models F \quad \Rightarrow N \vdash_{\ulcorner } F
$$

Γ is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \Rightarrow N \vdash_{\ulcorner\perp} \perp
$$

1.6 The Propositional Resolution Calculus

Resolution inference rule:

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : resolved atom
(Positive) factorisation inference rule:

$$
\frac{C \vee A \vee A}{C \vee A}
$$

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \vee " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

Sample Refutation

1.	$\neg P \vee \neg P \vee Q r$	(given)
2.	$P \vee Q$	(given)
3.	$\neg R \vee \neg Q$	(given)
4.	R	(given)
5.	$\neg P \vee Q \vee Q$	(Res. 2. into 1.)
6.	$\neg P \vee Q$	(Fact. 5.)
7.	$Q \vee Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization RIF

		$C \vee A \vee \ldots \vee A \quad \neg A \vee D$
1.	$\neg P \vee \neg P \vee Q$	(given)
2.	$P \vee Q$	(given)
3.	$\neg R \vee \neg Q$	(given)
4.	R	(given)
5.	$\neg P \vee Q \vee Q$	(Res. 2. into 1.)
6.	$Q \vee Q \vee Q$	(Res. 2. into 5.)
7.	$\neg R$	(Res. 6. into 3.)
8.	\perp	(Res. 4. into 7.)

Soundness of Resolution

Theorem 1.10. Propositional resolution is sound.
Proof:
Let \mathcal{A} valuation. To be shown:
(i) for resolution: $\mathcal{A} \models C \vee A, \mathcal{A} \models D \vee \neg A \Rightarrow \mathcal{A} \models C \vee D$
(ii) for factorization: $\mathcal{A} \models C \vee A \vee A \Rightarrow \mathcal{A} \models C \vee A$
(i): Assume $\mathcal{A}^{*}(C \vee A)=1, \mathcal{A}^{*}(D \vee \neg A)=1$.

Two cases need to be considered: (a) $\mathcal{A}^{*}(A)=1$, or (b) $\mathcal{A}^{*}(\neg A)=1$.
(a) $\mathcal{A} \models A \Rightarrow \mathcal{A} \models D \Rightarrow \mathcal{A} \models C \vee D$
(b) $\mathcal{A} \models \neg A \Rightarrow \mathcal{A} \models C \Rightarrow \mathcal{A} \models C \vee D$
(ii): Assume $\mathcal{A} \models C \vee A \vee A$. Note that $\mathcal{A}^{*}(C \vee A \vee A)=\mathcal{A}^{*}(C \vee A)$,
i.e. the conclusion is also true in \mathcal{A}.

Soundness of Resolution

Note: In propositional logic we have:

1. $\mathcal{A} \models L_{1} \vee \ldots \vee L_{n} \Leftrightarrow$ there exists $i: \mathcal{A} \models L_{i}$.
2. $\mathcal{A} \models A$ or $\mathcal{A} \models \neg A$.

Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash_{\text {Res }} \perp$, or equivalently: If $N \nvdash$ Res \perp, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

- The limit valuation can be shown to be a model of N.

Clause Orderings

1. We assume that \succ is any fixed ordering on propositional variables that is total and well-founded.
2. Extend \succ to an ordering \succ_{L} on literals:

$$
\begin{array}{lll}
{[\neg] P} & \succ_{L} & {[\neg] Q}
\end{array}, \text { if } P \succ Q
$$

3. Extend \succ_{L} to an ordering \succ_{C} on clauses:
$\succ_{C}=\left(\succ_{L}\right)_{\text {mul }}$, the multi-set extension of \succ_{L}.
Notation: \succ also for \succ_{L} and \succ_{C}.

Multi-Set Orderings

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$
\begin{aligned}
S_{1} \succ_{\text {mul }} S_{2}: & \Leftrightarrow S_{1} \neq S_{2} \\
& \text { and } \forall m \in M:\left[S_{2}(m)>S_{1}(m)\right. \\
& \left.\Rightarrow \quad \exists m^{\prime} \in M:\left(m^{\prime} \succ m \text { and } S_{1}\left(m^{\prime}\right)>S_{2}\left(m^{\prime}\right)\right)\right]
\end{aligned}
$$

Theorem 1.11:
a) $\succ_{\text {mul }}$ is a partial ordering.
b) \succ well-founded $\Rightarrow \succ_{\text {mul }}$ well-founded
c) \succ total $\Rightarrow \succ_{\text {mul }}$ total

Proof:
see Baader and Nipkow, page 22-24.

Example

Suppose $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$. Then:

$$
\begin{array}{lc}
& P_{0} \vee P_{1} \\
\prec & P_{1} \vee P_{2} \\
\prec & \neg P_{1} \vee P_{2} \\
\prec & \neg P_{1} \vee P_{4} \vee P_{3} \\
\prec & \neg P_{1} \vee \neg P_{4} \vee P_{3} \\
\prec & \neg P_{5} \vee P_{5}
\end{array}
$$

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under Res

$$
\begin{aligned}
& \operatorname{Res}(N)=\{C \mid C \text { is concl. of a rule in } \operatorname{Res} w / \text { premises in } N\} \\
& \operatorname{Res}^{0}(N)=N \\
& \operatorname{Res}^{n+1}(N)=\operatorname{Res}\left(\operatorname{Res}^{n}(N)\right) \cup \operatorname{Res}^{n}(N), \text { for } n \geq 0 \\
& \operatorname{Res}^{*}(N)=\bigcup_{n \geq 0} \operatorname{Res}^{n}(N) \\
& N \text { is called saturated (wrt. resolution), if } \operatorname{Res}(N) \subseteq N .
\end{aligned}
$$

Proposition 1.12

(i) $\operatorname{Res}^{*}(N)$ is saturated.
(ii) Res is refutationally complete, iff for each set N of ground clauses:

$$
N \models \perp \Leftrightarrow \perp \in \operatorname{Res}^{*}(N)
$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ.
Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in \mathcal{A};
- $\mathcal{A} \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ, starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.

In what follows, instead of referring to partial valuations \mathcal{A}_{C} we will refer to partial interpretations I_{C} (the set of atoms which are true in the valuation \mathcal{A}_{C}).

- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{c}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$			
2	$P_{0} \vee P_{1}$			
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
	$\neg P_{1} \vee P_{5}$			
7				

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$			
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
	$\neg P_{1} \vee P_{5}$			
7				

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$			
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$			
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$			
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	P_{4} maximal
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$			
7	$\neg P_{1} \vee P_{5}$			

Example

Let $P_{5} \succ P_{4} \succ P_{3} \succ P_{2} \succ P_{1} \succ P_{0}$ (max. literals in red)

	clauses C	$I_{C}=\mathcal{A}_{C}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	true in \mathcal{A}_{C}
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	P_{1} maximal
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	true in \mathcal{A}_{C}
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	P_{2} maximal
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	P_{4} maximal
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	\emptyset	P_{3} not maximal; min. counter-ex.
7	$\neg P_{1} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	$\left\{P_{5}\right\}$	

Main Ideas of the Construction

- Clauses are considered in the order given by \prec.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.
- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{c}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be monotone. One never deletes anything from I_{C} and the truth value of clauses smaller than C should be maintained the way it was in I_{C}.
- Hence, one chooses $\Delta_{C}=\{A\}$ if, and only if, C is false in I_{C}, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$
\frac{\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0} \neg P_{1} \vee \neg P_{4} \vee P_{3}}{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}}
$$

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	\emptyset	P_{3} occurs twice
				minimal counter-ex.
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{4}\right\}$	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	\emptyset	counterexample
7	$\neg P_{1} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{4}\right\}$	$\left\{P_{5}\right\}$	

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$
\frac{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}}{\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}}
$$

Construction of I for the extended clause set:

	clauses C	I_{C}	Δ_{C}	Remarks
1	$\neg P_{0}$	\emptyset	\emptyset	
2	$P_{0} \vee P_{1}$	\emptyset	$\left\{P_{1}\right\}$	
3	$P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	\emptyset	
4	$\neg P_{1} \vee P_{2}$	$\left\{P_{1}\right\}$	$\left\{P_{2}\right\}$	
9	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}\right\}$	$\left\{P_{3}\right\}$	
8	$\neg P_{1} \vee \neg P_{1} \vee P_{3} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
5	$\neg P_{1} \vee P_{4} \vee P_{3} \vee P_{0}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	
6	$\neg P_{1} \vee \neg P_{4} \vee P_{3}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	\emptyset	true in \mathcal{A}_{C}
7	$\neg P_{3} \vee P_{5}$	$\left\{P_{1}, P_{2}, P_{3}\right\}$	$\left\{P_{5}\right\}$	

The resulting $I=\left\{P_{1}, P_{2}, P_{3}, P_{5}\right\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_{C} and Δ_{C} for all ground clauses C over the given signature inductively over \succ :

$$
\begin{aligned}
I_{C} & :=\bigcup_{C \succ D} \Delta_{D} \\
\Delta_{C} & := \begin{cases}\{A\}, & \text { if } C \in N, C=C^{\prime} \vee A, A \succ C^{\prime}, I_{C} \not \vDash C \\
\emptyset, & \text { otherwise }\end{cases}
\end{aligned}
$$

We say that C produces A, if $\Delta_{C}=\{A\}$.

The candidate model for N (wrt. \succ) is given as $I_{N}^{\succ}:=\bigcup_{C} \Delta_{C}$.
We also simply write I_{N}, or I, for I_{N}^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

Some Properties of the Construction

Proposition 1.13:
(i) $C=\neg A \vee C^{\prime} \Rightarrow$ no $D \succeq C$ produces A.
(ii) C productive $\Rightarrow I_{C} \cup \Delta_{C} \vDash C$.
(iii) Let $D^{\prime} \succ D \succeq C$. Then

$$
I_{D} \cup \Delta_{D} \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \models C \text { and } I_{N} \models C
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \cup \Delta_{D} \not \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \not \models C \text { and } I_{N} \not \vDash C
$$

Some Properties of the Construction

(iv) Let $D^{\prime} \succ D \succ C$. Then

$$
I_{D} \models C \Rightarrow I_{D^{\prime}} \models C \text { and } I_{N} \models C
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \not \models C \Rightarrow I_{D^{\prime}} \not \models C \text { and } I_{N} \not \models C
$$

(v) $D=C \vee A$ produces $A \Rightarrow I_{N} \not \vDash C$.

Model Existence Theorem

Theorem 1.14 (Bachmair \& Ganzinger):
Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\perp \notin N$. Then $I_{N}^{\succ} \models N$.

Corollary 1.15:
Let N be saturated wrt. Res. Then $N \models \perp \Leftrightarrow \perp \in N$.

Model Existence Theorem

Proof:
Suppose $\perp \notin N$, but $I_{N}^{\succ} \not \models N$. Let $C \in N$ minimal (in \succ) such that $I_{N}^{\succ} \not \vDash C$. Since C is false in I_{N}, C is not productive. As $C \neq \perp$ there exists a maximal atom A in C.

Case 1: $C=\neg A \vee C^{\prime}$ (i.e., the maximal atom occurs negatively)
$\Rightarrow I_{N} \models A$ and $I_{N} \not \vDash C^{\prime}$
\Rightarrow some $D=D^{\prime} \vee A \in N$ produces A. As $\frac{D^{\prime} \vee A}{D^{\prime} \vee C^{\prime}} \neg \neg C^{\prime}$, we infer that $D^{\prime} \vee C^{\prime} \in N$, and $C \succ D^{\prime} \vee C^{\prime}$ and $I_{N} \not \vDash D^{\prime} \vee C^{\prime}$
\Rightarrow contradicts minimality of C.
Case 2: $\quad C=C^{\prime} \vee A \vee A$. Then $\frac{C^{\prime} \vee A \vee A}{C^{\prime} \vee A}$ yields a smaller counterexample $C^{\prime} \vee A \in N . \Rightarrow$ contradicts minimality of C.

Ordered Resolution with Selection

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem) one only needs to resolve and factor maximal atoms
\Rightarrow if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
\Rightarrow order restrictions
2. In the proof, it does not really matter with which negative literal an inference is performed
\Rightarrow choose a negative literal don't-care-nondeterministically
\Rightarrow selection

Selection Functions

A selection function is a mapping

$S: C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

$$
\begin{aligned}
& \neg A \vee \neg A \vee B \\
& \neg B_{0} \vee \neg B_{1} \vee A
\end{aligned}
$$

Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of clauses.

Resolution Calculus Reš

$\frac{C \vee A \quad D \vee \neg A}{C \vee D}$

[ordered resolution with selection]

if
(i) $A \succ C$;
(ii) nothing is selected in C by S;
(iii) $\neg A$ is selected in $D \vee \neg A$, or else nothing is selected in $D \vee \neg A$ and $\neg A \succeq \max (D)$.

Note: For positive literals, $A \succ C$ is the same as $A \succ \max (C)$.

Resolution Calculus Reš

$$
\frac{C \vee A \vee A}{(C \vee A)} \quad \text { [ordered factoring] }
$$

if A is maximal in C and nothing is selected in C.

Search Spaces Become Smaller

1	$A \vee B$	
2	$A \vee \square B$	
3	$\neg A \vee B$	
4	$\neg A \vee \neg B$	
5	$B \vee B$	Res 1, 3
6	B	Fact 5
7	$\neg A$	Res 6, 4
8	A	Res 6, 2
9	\perp	Res 8, 7

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

