Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

19.1.2023

Collection of exercises: Part 2

Exercise 1. Check the satisfiability of the following formulae using the DAG version of the Congruence Closure algorithm presented in the class:

1. $f(a, b) \approx f(b, a) \wedge f(c, a) \not \approx f(b, c)$
2. $f(g(a)) \approx g(f(a)) \wedge f(g(f(b))) \approx a \wedge f(b) \approx a \wedge g(f(a)) \not \approx a$
3. $f(f(f(a))) \approx f(a) \wedge f(f(a)) \approx a \wedge f(a) \not \approx a$

Exercise 2.

(1a) Check the satisfiability over \mathbb{Z} of the following set of constraints in positive difference logic using the method presented in the lecture. In case of satisfiability find a satisfiable assignment.
(a) $x-y \leq 4 \wedge y-z \leq 2 \wedge x-z \leq 2 \wedge z-x \leq-3$
(b) $x-y \leq 4 \wedge y-z \leq 0 \wedge x-z \leq 4 \wedge z-x \leq-3 \wedge x-u \leq-4$
(1b) Check the satisfiability over \mathbb{Z} of the following set of constraints in difference logic using the method presented in the lecture. In case of satisfiability find a satisfiable assignment.
(a) $x-y \leq 4 \wedge y-z \leq 0 \wedge x-z<4 \wedge z-x \leq-3 \wedge x-u \leq-4$
(a) $x-y \leq 4 \wedge y-z \leq 0 \wedge x-z<4 \wedge z-x<-3 \wedge x-u \leq-4$
(2a) Check the satisfiability over \mathbb{Q} of the following sets of constraints in positive difference logic. In case of satisfiability find a satisfiable assignment.
(a) $x-y \leq 5 \wedge y-u \leq 4 \wedge x-z \leq-1 \wedge z-x \leq 1$.
(b) $x-y \leq 5 \wedge y-u \leq 4 \wedge x-z \leq-1 \wedge z-x \leq 1 \wedge z-y \leq-5$.
(2a) Check the satisfiability over \mathbb{Q} of the following sets of constraints in difference logic. In case of satisfiability find a satisfiable assignment.
(a) $x-y \leq 5 \wedge y-u \leq 4 \wedge x-z<-1 \wedge z-x \leq 1$.
(b) $x-y \leq 5 \wedge y-u \leq 4 \wedge x-z<-0.5 \wedge z-x<1 \wedge z-y \leq-5$.

Exercise 3. Check the satisfiability of the following $L I(\mathbb{Q})$-formulae using the FourierMotzkin method for quantifier elimination:

- $F_{1}: \quad-x_{1}+x_{2} \leq 3 \wedge x_{1}-5 \leq x_{3} \wedge x_{3}-x_{1}-x_{2} \leq 4$
- $F_{2}: \quad-x_{1}+x_{2} \leq 3 \wedge x_{1}-5 \leq x_{3} \wedge x_{3}-x_{1}-x_{2}=4$

Exercise 4. Check the satisfiability of the following $L I(\mathbb{Q})$-formula using the WeisspfenningLoos method for quantifier elimination:

$$
F: \quad x_{1}+2 x_{2} \leq 3 \wedge \quad x_{2}-x_{1} \leq 4
$$

Exercise 5. Use the Nelson-Oppen procedure for checking the satisfiability of the following formulae:

1. $1 \leq c \wedge c \leq 3 \wedge f(c) \not \approx f(1) \wedge f(c) \not \approx f(3) \wedge f(1) \not \approx f(2)$
in the combination $L I(\mathbb{Z}) \cup U I F_{\{f\}}$.
2. $f(c) \approx c+d \wedge c \leq d+e \wedge c+e \leq d \wedge d=1 \wedge f(c) \not \approx f(2)$ in the combination $L I(\mathbb{Z}) \cup U I F_{\{f\}}$.
3. $c+d \approx e \wedge f(e) \approx e \wedge f(c+d) \not \approx e$ in the combination $L I(\mathbb{Q}) \cup U I F_{\{f\}}$.

Exercise 6: Let \mathcal{T} be the combination of $\operatorname{LI}(\mathbb{Q})$ (linear arithmetic over \mathbb{Q}) and $U I F_{\Sigma}$, the theory of uninterpreted function symbols in a signature Σ containing the unary function h.

Check the satisfiability of the following ground formula w.r.t. \mathcal{T} using the deterministic version of the Nelson-Oppen procedure (after purifying the formulae check for entailment of equalities between shared constants and propagate the entailed equalities):

- $\phi: \quad a+h(h(h(b))+c) \approx e \wedge h(b) \approx b^{\prime} \wedge e \approx h\left(b^{\prime}\right)+c \wedge a+h(e) \not \approx e$.

For reasoning in $U I F_{\Sigma}$ use the graph-based method for computing the congruence closure presented in the class.

Exercise 7. Let $\mathcal{T}=L I(\mathbb{Q})$, and let $Q:=x \leq 10, R:=y \leq x, P:=x+x+x \leq 30, S:=y \geq$ 10. Use a $\operatorname{DPLL}(\mathcal{T})$ method to check the satisfiability w.r.t. \mathcal{T} of the following set of clauses:

$$
\begin{array}{cc}
(1) & \neg R \vee P \\
(2) & \neg Q \vee \neg P \\
(3) & R \vee P \\
(4) & S \tag{4}
\end{array}
$$

For checking the satisfiability of conjunctions of inequalities in $L I(\mathbb{Q})$ use the Fourier-Motzkin method.

Exercise 8. In what follows we consider the theory of arrays defined in the lecture. We assume that the theory of indices \mathcal{T}_{i} is $L I(\mathbb{Z})$, and the theory of elements \mathcal{T}_{e} is $L I(\mathbb{Q})$.

Which of the formulae below are in the array property fragment and which are not? Justify your answer. (The universally quantified variables i, j are of sort index; the indices $k, l_{i}, u_{i}, i=1,2$ which are not universally quantified are considered to be constants of sort index)
(1) $\forall i(a[a[i]]>a[i])$
(2) $\forall i(i>a[i])$
(3) $\forall i(a[i]>b[i])$
(4) $\forall i(i \leq a[k] \rightarrow a[i]=a[k])$
(5) $\forall i, j\left(l_{1}<i<u_{1}<l_{2}<j<u_{2} \rightarrow a[i] \leq a[j]\right)$
(6) $\forall i, j\left(l_{1}<i<j<u_{2} \rightarrow a[i] \leq a[j]\right)$
(7) $\forall i, j\left(l_{1}<i \leq j<u_{2} \rightarrow a[i] \leq a[j]\right)$

Exercise 9.

(Note: the probability that such an exercise would come up in the exam is extremely low)
Consider the array property formula:
$F: \operatorname{write}\left(a, l, v_{1}\right)[k]=b[k] \wedge b[k]=v_{2} \wedge a[k]=v_{1} \wedge v_{1} \neq v_{2} \wedge \forall i(i \leq l-1 \rightarrow a[i]=b[i]) \wedge \forall i(i \geq l+1 \rightarrow a[i]=b[i])$
(1) Apply Steps 1-6 described in the lecture to F. Let F_{6} be the formula obtained after Step 6.
(2) Check the satisfiability of F_{6} using one of the versions of the $\operatorname{DPLL}(\mathcal{T})$ procedure presented in the class. For theory reasoning in combinations of theories use the NelsonOppen procedure.

